| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmodscaf | GIF version | ||
| Description: The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| scaffval.b | ⊢ 𝐵 = (Base‘𝑊) |
| scaffval.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| scaffval.k | ⊢ 𝐾 = (Base‘𝐹) |
| scaffval.a | ⊢ ∙ = ( ·sf ‘𝑊) |
| Ref | Expression |
|---|---|
| lmodscaf | ⊢ (𝑊 ∈ LMod → ∙ :(𝐾 × 𝐵)⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scaffval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑊) | |
| 2 | scaffval.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 3 | eqid 2196 | . . . . . 6 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 4 | scaffval.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝐹) | |
| 5 | 1, 2, 3, 4 | lmodvscl 13937 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐵) → (𝑥( ·𝑠 ‘𝑊)𝑦) ∈ 𝐵) |
| 6 | 5 | 3expb 1206 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝑊)𝑦) ∈ 𝐵) |
| 7 | 6 | ralrimivva 2579 | . . 3 ⊢ (𝑊 ∈ LMod → ∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝐵 (𝑥( ·𝑠 ‘𝑊)𝑦) ∈ 𝐵) |
| 8 | eqid 2196 | . . . 4 ⊢ (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦)) = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦)) | |
| 9 | 8 | fmpo 6268 | . . 3 ⊢ (∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝐵 (𝑥( ·𝑠 ‘𝑊)𝑦) ∈ 𝐵 ↔ (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦)):(𝐾 × 𝐵)⟶𝐵) |
| 10 | 7, 9 | sylib 122 | . 2 ⊢ (𝑊 ∈ LMod → (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦)):(𝐾 × 𝐵)⟶𝐵) |
| 11 | scaffval.a | . . . 4 ⊢ ∙ = ( ·sf ‘𝑊) | |
| 12 | 1, 2, 4, 11, 3 | scaffvalg 13938 | . . 3 ⊢ (𝑊 ∈ LMod → ∙ = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦))) |
| 13 | 12 | feq1d 5397 | . 2 ⊢ (𝑊 ∈ LMod → ( ∙ :(𝐾 × 𝐵)⟶𝐵 ↔ (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦)):(𝐾 × 𝐵)⟶𝐵)) |
| 14 | 10, 13 | mpbird 167 | 1 ⊢ (𝑊 ∈ LMod → ∙ :(𝐾 × 𝐵)⟶𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ∀wral 2475 × cxp 4662 ⟶wf 5255 ‘cfv 5259 (class class class)co 5925 ∈ cmpo 5927 Basecbs 12703 Scalarcsca 12783 ·𝑠 cvsca 12784 LModclmod 13919 ·sf cscaf 13920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-ndx 12706 df-slot 12707 df-base 12709 df-plusg 12793 df-mulr 12794 df-sca 12796 df-vsca 12797 df-lmod 13921 df-scaf 13922 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |