![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lmodscaf | GIF version |
Description: The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
scaffval.b | β’ π΅ = (Baseβπ) |
scaffval.f | β’ πΉ = (Scalarβπ) |
scaffval.k | β’ πΎ = (BaseβπΉ) |
scaffval.a | β’ β = ( Β·sf βπ) |
Ref | Expression |
---|---|
lmodscaf | β’ (π β LMod β β :(πΎ Γ π΅)βΆπ΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scaffval.b | . . . . . 6 β’ π΅ = (Baseβπ) | |
2 | scaffval.f | . . . . . 6 β’ πΉ = (Scalarβπ) | |
3 | eqid 2177 | . . . . . 6 β’ ( Β·π βπ) = ( Β·π βπ) | |
4 | scaffval.k | . . . . . 6 β’ πΎ = (BaseβπΉ) | |
5 | 1, 2, 3, 4 | lmodvscl 13395 | . . . . 5 β’ ((π β LMod β§ π₯ β πΎ β§ π¦ β π΅) β (π₯( Β·π βπ)π¦) β π΅) |
6 | 5 | 3expb 1204 | . . . 4 β’ ((π β LMod β§ (π₯ β πΎ β§ π¦ β π΅)) β (π₯( Β·π βπ)π¦) β π΅) |
7 | 6 | ralrimivva 2559 | . . 3 β’ (π β LMod β βπ₯ β πΎ βπ¦ β π΅ (π₯( Β·π βπ)π¦) β π΅) |
8 | eqid 2177 | . . . 4 β’ (π₯ β πΎ, π¦ β π΅ β¦ (π₯( Β·π βπ)π¦)) = (π₯ β πΎ, π¦ β π΅ β¦ (π₯( Β·π βπ)π¦)) | |
9 | 8 | fmpo 6202 | . . 3 β’ (βπ₯ β πΎ βπ¦ β π΅ (π₯( Β·π βπ)π¦) β π΅ β (π₯ β πΎ, π¦ β π΅ β¦ (π₯( Β·π βπ)π¦)):(πΎ Γ π΅)βΆπ΅) |
10 | 7, 9 | sylib 122 | . 2 β’ (π β LMod β (π₯ β πΎ, π¦ β π΅ β¦ (π₯( Β·π βπ)π¦)):(πΎ Γ π΅)βΆπ΅) |
11 | scaffval.a | . . . 4 β’ β = ( Β·sf βπ) | |
12 | 1, 2, 4, 11, 3 | scaffvalg 13396 | . . 3 β’ (π β LMod β β = (π₯ β πΎ, π¦ β π΅ β¦ (π₯( Β·π βπ)π¦))) |
13 | 12 | feq1d 5353 | . 2 β’ (π β LMod β ( β :(πΎ Γ π΅)βΆπ΅ β (π₯ β πΎ, π¦ β π΅ β¦ (π₯( Β·π βπ)π¦)):(πΎ Γ π΅)βΆπ΅)) |
14 | 10, 13 | mpbird 167 | 1 β’ (π β LMod β β :(πΎ Γ π΅)βΆπ΅) |
Colors of variables: wff set class |
Syntax hints: β wi 4 = wceq 1353 β wcel 2148 βwral 2455 Γ cxp 4625 βΆwf 5213 βcfv 5217 (class class class)co 5875 β cmpo 5877 Basecbs 12462 Scalarcsca 12539 Β·π cvsca 12540 LModclmod 13377 Β·sf cscaf 13378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4119 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-cnex 7902 ax-resscn 7903 ax-1re 7905 ax-addrcl 7908 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2740 df-sbc 2964 df-csb 3059 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-iun 3889 df-br 4005 df-opab 4066 df-mpt 4067 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-f1 5222 df-fo 5223 df-f1o 5224 df-fv 5225 df-ov 5878 df-oprab 5879 df-mpo 5880 df-1st 6141 df-2nd 6142 df-inn 8920 df-2 8978 df-3 8979 df-4 8980 df-5 8981 df-6 8982 df-ndx 12465 df-slot 12466 df-base 12468 df-plusg 12549 df-mulr 12550 df-sca 12552 df-vsca 12553 df-lmod 13379 df-scaf 13380 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |