![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lmodscaf | GIF version |
Description: The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
scaffval.b | ⊢ 𝐵 = (Base‘𝑊) |
scaffval.f | ⊢ 𝐹 = (Scalar‘𝑊) |
scaffval.k | ⊢ 𝐾 = (Base‘𝐹) |
scaffval.a | ⊢ ∙ = ( ·sf ‘𝑊) |
Ref | Expression |
---|---|
lmodscaf | ⊢ (𝑊 ∈ LMod → ∙ :(𝐾 × 𝐵)⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scaffval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑊) | |
2 | scaffval.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | eqid 2193 | . . . . . 6 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
4 | scaffval.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝐹) | |
5 | 1, 2, 3, 4 | lmodvscl 13804 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐵) → (𝑥( ·𝑠 ‘𝑊)𝑦) ∈ 𝐵) |
6 | 5 | 3expb 1206 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝑊)𝑦) ∈ 𝐵) |
7 | 6 | ralrimivva 2576 | . . 3 ⊢ (𝑊 ∈ LMod → ∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝐵 (𝑥( ·𝑠 ‘𝑊)𝑦) ∈ 𝐵) |
8 | eqid 2193 | . . . 4 ⊢ (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦)) = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦)) | |
9 | 8 | fmpo 6256 | . . 3 ⊢ (∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝐵 (𝑥( ·𝑠 ‘𝑊)𝑦) ∈ 𝐵 ↔ (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦)):(𝐾 × 𝐵)⟶𝐵) |
10 | 7, 9 | sylib 122 | . 2 ⊢ (𝑊 ∈ LMod → (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦)):(𝐾 × 𝐵)⟶𝐵) |
11 | scaffval.a | . . . 4 ⊢ ∙ = ( ·sf ‘𝑊) | |
12 | 1, 2, 4, 11, 3 | scaffvalg 13805 | . . 3 ⊢ (𝑊 ∈ LMod → ∙ = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦))) |
13 | 12 | feq1d 5391 | . 2 ⊢ (𝑊 ∈ LMod → ( ∙ :(𝐾 × 𝐵)⟶𝐵 ↔ (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦)):(𝐾 × 𝐵)⟶𝐵)) |
14 | 10, 13 | mpbird 167 | 1 ⊢ (𝑊 ∈ LMod → ∙ :(𝐾 × 𝐵)⟶𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 ∀wral 2472 × cxp 4658 ⟶wf 5251 ‘cfv 5255 (class class class)co 5919 ∈ cmpo 5921 Basecbs 12621 Scalarcsca 12701 ·𝑠 cvsca 12702 LModclmod 13786 ·sf cscaf 13787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-ndx 12624 df-slot 12625 df-base 12627 df-plusg 12711 df-mulr 12712 df-sca 12714 df-vsca 12715 df-lmod 13788 df-scaf 13789 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |