| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmodscaf | GIF version | ||
| Description: The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| scaffval.b | ⊢ 𝐵 = (Base‘𝑊) |
| scaffval.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| scaffval.k | ⊢ 𝐾 = (Base‘𝐹) |
| scaffval.a | ⊢ ∙ = ( ·sf ‘𝑊) |
| Ref | Expression |
|---|---|
| lmodscaf | ⊢ (𝑊 ∈ LMod → ∙ :(𝐾 × 𝐵)⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scaffval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑊) | |
| 2 | scaffval.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 3 | eqid 2206 | . . . . . 6 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 4 | scaffval.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝐹) | |
| 5 | 1, 2, 3, 4 | lmodvscl 14117 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐵) → (𝑥( ·𝑠 ‘𝑊)𝑦) ∈ 𝐵) |
| 6 | 5 | 3expb 1207 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝑊)𝑦) ∈ 𝐵) |
| 7 | 6 | ralrimivva 2589 | . . 3 ⊢ (𝑊 ∈ LMod → ∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝐵 (𝑥( ·𝑠 ‘𝑊)𝑦) ∈ 𝐵) |
| 8 | eqid 2206 | . . . 4 ⊢ (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦)) = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦)) | |
| 9 | 8 | fmpo 6297 | . . 3 ⊢ (∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝐵 (𝑥( ·𝑠 ‘𝑊)𝑦) ∈ 𝐵 ↔ (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦)):(𝐾 × 𝐵)⟶𝐵) |
| 10 | 7, 9 | sylib 122 | . 2 ⊢ (𝑊 ∈ LMod → (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦)):(𝐾 × 𝐵)⟶𝐵) |
| 11 | scaffval.a | . . . 4 ⊢ ∙ = ( ·sf ‘𝑊) | |
| 12 | 1, 2, 4, 11, 3 | scaffvalg 14118 | . . 3 ⊢ (𝑊 ∈ LMod → ∙ = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦))) |
| 13 | 12 | feq1d 5419 | . 2 ⊢ (𝑊 ∈ LMod → ( ∙ :(𝐾 × 𝐵)⟶𝐵 ↔ (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦)):(𝐾 × 𝐵)⟶𝐵)) |
| 14 | 10, 13 | mpbird 167 | 1 ⊢ (𝑊 ∈ LMod → ∙ :(𝐾 × 𝐵)⟶𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 ∀wral 2485 × cxp 4678 ⟶wf 5273 ‘cfv 5277 (class class class)co 5954 ∈ cmpo 5956 Basecbs 12882 Scalarcsca 12962 ·𝑠 cvsca 12963 LModclmod 14099 ·sf cscaf 14100 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-cnex 8029 ax-resscn 8030 ax-1re 8032 ax-addrcl 8035 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-inn 9050 df-2 9108 df-3 9109 df-4 9110 df-5 9111 df-6 9112 df-ndx 12885 df-slot 12886 df-base 12888 df-plusg 12972 df-mulr 12973 df-sca 12975 df-vsca 12976 df-lmod 14101 df-scaf 14102 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |