| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmodsubvs | Unicode version | ||
| Description: Subtraction of a scalar product in terms of addition. (Contributed by NM, 9-Apr-2015.) |
| Ref | Expression |
|---|---|
| lmodsubvs.v |
|
| lmodsubvs.p |
|
| lmodsubvs.m |
|
| lmodsubvs.t |
|
| lmodsubvs.f |
|
| lmodsubvs.k |
|
| lmodsubvs.n |
|
| lmodsubvs.w |
|
| lmodsubvs.a |
|
| lmodsubvs.x |
|
| lmodsubvs.y |
|
| Ref | Expression |
|---|---|
| lmodsubvs |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodsubvs.w |
. . 3
| |
| 2 | lmodsubvs.x |
. . 3
| |
| 3 | lmodsubvs.a |
. . . 4
| |
| 4 | lmodsubvs.y |
. . . 4
| |
| 5 | lmodsubvs.v |
. . . . 5
| |
| 6 | lmodsubvs.f |
. . . . 5
| |
| 7 | lmodsubvs.t |
. . . . 5
| |
| 8 | lmodsubvs.k |
. . . . 5
| |
| 9 | 5, 6, 7, 8 | lmodvscl 14038 |
. . . 4
|
| 10 | 1, 3, 4, 9 | syl3anc 1249 |
. . 3
|
| 11 | lmodsubvs.p |
. . . 4
| |
| 12 | lmodsubvs.m |
. . . 4
| |
| 13 | lmodsubvs.n |
. . . 4
| |
| 14 | eqid 2204 |
. . . 4
| |
| 15 | 5, 11, 12, 6, 7, 13, 14 | lmodvsubval2 14075 |
. . 3
|
| 16 | 1, 2, 10, 15 | syl3anc 1249 |
. 2
|
| 17 | 6 | lmodring 14028 |
. . . . . . . 8
|
| 18 | 1, 17 | syl 14 |
. . . . . . 7
|
| 19 | ringgrp 13734 |
. . . . . . 7
| |
| 20 | 18, 19 | syl 14 |
. . . . . 6
|
| 21 | 8, 14 | ringidcl 13753 |
. . . . . . 7
|
| 22 | 18, 21 | syl 14 |
. . . . . 6
|
| 23 | 8, 13 | grpinvcl 13351 |
. . . . . 6
|
| 24 | 20, 22, 23 | syl2anc 411 |
. . . . 5
|
| 25 | eqid 2204 |
. . . . . 6
| |
| 26 | 5, 6, 7, 8, 25 | lmodvsass 14046 |
. . . . 5
|
| 27 | 1, 24, 3, 4, 26 | syl13anc 1251 |
. . . 4
|
| 28 | 8, 25, 14, 13, 18, 3 | ringnegl 13784 |
. . . . 5
|
| 29 | 28 | oveq1d 5958 |
. . . 4
|
| 30 | 27, 29 | eqtr3d 2239 |
. . 3
|
| 31 | 30 | oveq2d 5959 |
. 2
|
| 32 | 16, 31 | eqtrd 2237 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-pre-ltirr 8036 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-pnf 8108 df-mnf 8109 df-ltxr 8111 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-5 9097 df-6 9098 df-ndx 12806 df-slot 12807 df-base 12809 df-sets 12810 df-plusg 12893 df-mulr 12894 df-sca 12896 df-vsca 12897 df-0g 13061 df-mgm 13159 df-sgrp 13205 df-mnd 13220 df-grp 13306 df-minusg 13307 df-sbg 13308 df-mgp 13654 df-ur 13693 df-ring 13731 df-lmod 14022 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |