| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmodsubvs | Unicode version | ||
| Description: Subtraction of a scalar product in terms of addition. (Contributed by NM, 9-Apr-2015.) |
| Ref | Expression |
|---|---|
| lmodsubvs.v |
|
| lmodsubvs.p |
|
| lmodsubvs.m |
|
| lmodsubvs.t |
|
| lmodsubvs.f |
|
| lmodsubvs.k |
|
| lmodsubvs.n |
|
| lmodsubvs.w |
|
| lmodsubvs.a |
|
| lmodsubvs.x |
|
| lmodsubvs.y |
|
| Ref | Expression |
|---|---|
| lmodsubvs |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodsubvs.w |
. . 3
| |
| 2 | lmodsubvs.x |
. . 3
| |
| 3 | lmodsubvs.a |
. . . 4
| |
| 4 | lmodsubvs.y |
. . . 4
| |
| 5 | lmodsubvs.v |
. . . . 5
| |
| 6 | lmodsubvs.f |
. . . . 5
| |
| 7 | lmodsubvs.t |
. . . . 5
| |
| 8 | lmodsubvs.k |
. . . . 5
| |
| 9 | 5, 6, 7, 8 | lmodvscl 14182 |
. . . 4
|
| 10 | 1, 3, 4, 9 | syl3anc 1250 |
. . 3
|
| 11 | lmodsubvs.p |
. . . 4
| |
| 12 | lmodsubvs.m |
. . . 4
| |
| 13 | lmodsubvs.n |
. . . 4
| |
| 14 | eqid 2207 |
. . . 4
| |
| 15 | 5, 11, 12, 6, 7, 13, 14 | lmodvsubval2 14219 |
. . 3
|
| 16 | 1, 2, 10, 15 | syl3anc 1250 |
. 2
|
| 17 | 6 | lmodring 14172 |
. . . . . . . 8
|
| 18 | 1, 17 | syl 14 |
. . . . . . 7
|
| 19 | ringgrp 13878 |
. . . . . . 7
| |
| 20 | 18, 19 | syl 14 |
. . . . . 6
|
| 21 | 8, 14 | ringidcl 13897 |
. . . . . . 7
|
| 22 | 18, 21 | syl 14 |
. . . . . 6
|
| 23 | 8, 13 | grpinvcl 13495 |
. . . . . 6
|
| 24 | 20, 22, 23 | syl2anc 411 |
. . . . 5
|
| 25 | eqid 2207 |
. . . . . 6
| |
| 26 | 5, 6, 7, 8, 25 | lmodvsass 14190 |
. . . . 5
|
| 27 | 1, 24, 3, 4, 26 | syl13anc 1252 |
. . . 4
|
| 28 | 8, 25, 14, 13, 18, 3 | ringnegl 13928 |
. . . . 5
|
| 29 | 28 | oveq1d 5982 |
. . . 4
|
| 30 | 27, 29 | eqtr3d 2242 |
. . 3
|
| 31 | 30 | oveq2d 5983 |
. 2
|
| 32 | 16, 31 | eqtrd 2240 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-pre-ltirr 8072 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-pnf 8144 df-mnf 8145 df-ltxr 8147 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-5 9133 df-6 9134 df-ndx 12950 df-slot 12951 df-base 12953 df-sets 12954 df-plusg 13037 df-mulr 13038 df-sca 13040 df-vsca 13041 df-0g 13205 df-mgm 13303 df-sgrp 13349 df-mnd 13364 df-grp 13450 df-minusg 13451 df-sbg 13452 df-mgp 13798 df-ur 13837 df-ring 13875 df-lmod 14166 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |