ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodvsneg Unicode version

Theorem lmodvsneg 14093
Description: Multiplication of a vector by a negated scalar. (Contributed by Stefan O'Rear, 28-Feb-2015.)
Hypotheses
Ref Expression
lmodvsneg.b  |-  B  =  ( Base `  W
)
lmodvsneg.f  |-  F  =  (Scalar `  W )
lmodvsneg.s  |-  .x.  =  ( .s `  W )
lmodvsneg.n  |-  N  =  ( invg `  W )
lmodvsneg.k  |-  K  =  ( Base `  F
)
lmodvsneg.m  |-  M  =  ( invg `  F )
lmodvsneg.w  |-  ( ph  ->  W  e.  LMod )
lmodvsneg.x  |-  ( ph  ->  X  e.  B )
lmodvsneg.r  |-  ( ph  ->  R  e.  K )
Assertion
Ref Expression
lmodvsneg  |-  ( ph  ->  ( N `  ( R  .x.  X ) )  =  ( ( M `
 R )  .x.  X ) )

Proof of Theorem lmodvsneg
StepHypRef Expression
1 lmodvsneg.w . . 3  |-  ( ph  ->  W  e.  LMod )
2 lmodvsneg.f . . . . . . 7  |-  F  =  (Scalar `  W )
32lmodring 14057 . . . . . 6  |-  ( W  e.  LMod  ->  F  e. 
Ring )
41, 3syl 14 . . . . 5  |-  ( ph  ->  F  e.  Ring )
5 ringgrp 13763 . . . . 5  |-  ( F  e.  Ring  ->  F  e. 
Grp )
64, 5syl 14 . . . 4  |-  ( ph  ->  F  e.  Grp )
7 lmodvsneg.k . . . . . 6  |-  K  =  ( Base `  F
)
8 eqid 2205 . . . . . 6  |-  ( 1r
`  F )  =  ( 1r `  F
)
97, 8ringidcl 13782 . . . . 5  |-  ( F  e.  Ring  ->  ( 1r
`  F )  e.  K )
104, 9syl 14 . . . 4  |-  ( ph  ->  ( 1r `  F
)  e.  K )
11 lmodvsneg.m . . . . 5  |-  M  =  ( invg `  F )
127, 11grpinvcl 13380 . . . 4  |-  ( ( F  e.  Grp  /\  ( 1r `  F )  e.  K )  -> 
( M `  ( 1r `  F ) )  e.  K )
136, 10, 12syl2anc 411 . . 3  |-  ( ph  ->  ( M `  ( 1r `  F ) )  e.  K )
14 lmodvsneg.r . . 3  |-  ( ph  ->  R  e.  K )
15 lmodvsneg.x . . 3  |-  ( ph  ->  X  e.  B )
16 lmodvsneg.b . . . 4  |-  B  =  ( Base `  W
)
17 lmodvsneg.s . . . 4  |-  .x.  =  ( .s `  W )
18 eqid 2205 . . . 4  |-  ( .r
`  F )  =  ( .r `  F
)
1916, 2, 17, 7, 18lmodvsass 14075 . . 3  |-  ( ( W  e.  LMod  /\  (
( M `  ( 1r `  F ) )  e.  K  /\  R  e.  K  /\  X  e.  B ) )  -> 
( ( ( M `
 ( 1r `  F ) ) ( .r `  F ) R )  .x.  X
)  =  ( ( M `  ( 1r
`  F ) ) 
.x.  ( R  .x.  X ) ) )
201, 13, 14, 15, 19syl13anc 1252 . 2  |-  ( ph  ->  ( ( ( M `
 ( 1r `  F ) ) ( .r `  F ) R )  .x.  X
)  =  ( ( M `  ( 1r
`  F ) ) 
.x.  ( R  .x.  X ) ) )
217, 18, 8, 11, 4, 14ringnegl 13813 . . 3  |-  ( ph  ->  ( ( M `  ( 1r `  F ) ) ( .r `  F ) R )  =  ( M `  R ) )
2221oveq1d 5959 . 2  |-  ( ph  ->  ( ( ( M `
 ( 1r `  F ) ) ( .r `  F ) R )  .x.  X
)  =  ( ( M `  R ) 
.x.  X ) )
2316, 2, 17, 7lmodvscl 14067 . . . 4  |-  ( ( W  e.  LMod  /\  R  e.  K  /\  X  e.  B )  ->  ( R  .x.  X )  e.  B )
241, 14, 15, 23syl3anc 1250 . . 3  |-  ( ph  ->  ( R  .x.  X
)  e.  B )
25 lmodvsneg.n . . . 4  |-  N  =  ( invg `  W )
2616, 25, 2, 17, 8, 11lmodvneg1 14092 . . 3  |-  ( ( W  e.  LMod  /\  ( R  .x.  X )  e.  B )  ->  (
( M `  ( 1r `  F ) ) 
.x.  ( R  .x.  X ) )  =  ( N `  ( R  .x.  X ) ) )
271, 24, 26syl2anc 411 . 2  |-  ( ph  ->  ( ( M `  ( 1r `  F ) )  .x.  ( R 
.x.  X ) )  =  ( N `  ( R  .x.  X ) ) )
2820, 22, 273eqtr3rd 2247 1  |-  ( ph  ->  ( N `  ( R  .x.  X ) )  =  ( ( M `
 R )  .x.  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   ` cfv 5271  (class class class)co 5944   Basecbs 12832   .rcmulr 12910  Scalarcsca 12912   .scvsca 12913   Grpcgrp 13332   invgcminusg 13333   1rcur 13721   Ringcrg 13758   LModclmod 14049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-5 9098  df-6 9099  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-plusg 12922  df-mulr 12923  df-sca 12925  df-vsca 12926  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336  df-mgp 13683  df-ur 13722  df-ring 13760  df-lmod 14051
This theorem is referenced by:  lmodnegadd  14098
  Copyright terms: Public domain W3C validator