ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lssvsubcl Unicode version

Theorem lssvsubcl 14128
Description: Closure of vector subtraction in a subspace. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lssvsubcl.m  |-  .-  =  ( -g `  W )
lssvsubcl.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
lssvsubcl  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( X  e.  U  /\  Y  e.  U ) )  -> 
( X  .-  Y
)  e.  U )

Proof of Theorem lssvsubcl
StepHypRef Expression
1 simpll 527 . . 3  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( X  e.  U  /\  Y  e.  U ) )  ->  W  e.  LMod )
2 simplr 528 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( X  e.  U  /\  Y  e.  U ) )  ->  U  e.  S )
3 simprl 529 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( X  e.  U  /\  Y  e.  U ) )  ->  X  e.  U )
4 eqid 2205 . . . . 5  |-  ( Base `  W )  =  (
Base `  W )
5 lssvsubcl.s . . . . 5  |-  S  =  ( LSubSp `  W )
64, 5lsselg 14123 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S  /\  X  e.  U )  ->  X  e.  ( Base `  W
) )
71, 2, 3, 6syl3anc 1250 . . 3  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( X  e.  U  /\  Y  e.  U ) )  ->  X  e.  ( Base `  W ) )
8 simprr 531 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( X  e.  U  /\  Y  e.  U ) )  ->  Y  e.  U )
94, 5lsselg 14123 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S  /\  Y  e.  U )  ->  Y  e.  ( Base `  W
) )
101, 2, 8, 9syl3anc 1250 . . 3  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( X  e.  U  /\  Y  e.  U ) )  ->  Y  e.  ( Base `  W ) )
11 eqid 2205 . . . 4  |-  ( +g  `  W )  =  ( +g  `  W )
12 lssvsubcl.m . . . 4  |-  .-  =  ( -g `  W )
13 eqid 2205 . . . 4  |-  (Scalar `  W )  =  (Scalar `  W )
14 eqid 2205 . . . 4  |-  ( .s
`  W )  =  ( .s `  W
)
15 eqid 2205 . . . 4  |-  ( invg `  (Scalar `  W ) )  =  ( invg `  (Scalar `  W ) )
16 eqid 2205 . . . 4  |-  ( 1r
`  (Scalar `  W )
)  =  ( 1r
`  (Scalar `  W )
)
174, 11, 12, 13, 14, 15, 16lmodvsubval2 14104 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  ( Base `  W
)  /\  Y  e.  ( Base `  W )
)  ->  ( X  .-  Y )  =  ( X ( +g  `  W
) ( ( ( invg `  (Scalar `  W ) ) `  ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) Y ) ) )
181, 7, 10, 17syl3anc 1250 . 2  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( X  e.  U  /\  Y  e.  U ) )  -> 
( X  .-  Y
)  =  ( X ( +g  `  W
) ( ( ( invg `  (Scalar `  W ) ) `  ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) Y ) ) )
1913lmodfgrp 14058 . . . . . . 7  |-  ( W  e.  LMod  ->  (Scalar `  W )  e.  Grp )
201, 19syl 14 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( X  e.  U  /\  Y  e.  U ) )  -> 
(Scalar `  W )  e.  Grp )
21 eqid 2205 . . . . . . . 8  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
2213, 21, 16lmod1cl 14077 . . . . . . 7  |-  ( W  e.  LMod  ->  ( 1r
`  (Scalar `  W )
)  e.  ( Base `  (Scalar `  W )
) )
231, 22syl 14 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( X  e.  U  /\  Y  e.  U ) )  -> 
( 1r `  (Scalar `  W ) )  e.  ( Base `  (Scalar `  W ) ) )
2421, 15grpinvcl 13380 . . . . . 6  |-  ( ( (Scalar `  W )  e.  Grp  /\  ( 1r
`  (Scalar `  W )
)  e.  ( Base `  (Scalar `  W )
) )  ->  (
( invg `  (Scalar `  W ) ) `
 ( 1r `  (Scalar `  W ) ) )  e.  ( Base `  (Scalar `  W )
) )
2520, 23, 24syl2anc 411 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( X  e.  U  /\  Y  e.  U ) )  -> 
( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) )  e.  (
Base `  (Scalar `  W
) ) )
264, 13, 14, 21lmodvscl 14067 . . . . 5  |-  ( ( W  e.  LMod  /\  (
( invg `  (Scalar `  W ) ) `
 ( 1r `  (Scalar `  W ) ) )  e.  ( Base `  (Scalar `  W )
)  /\  Y  e.  ( Base `  W )
)  ->  ( (
( invg `  (Scalar `  W ) ) `
 ( 1r `  (Scalar `  W ) ) ) ( .s `  W ) Y )  e.  ( Base `  W
) )
271, 25, 10, 26syl3anc 1250 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( X  e.  U  /\  Y  e.  U ) )  -> 
( ( ( invg `  (Scalar `  W ) ) `  ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) Y )  e.  ( Base `  W
) )
284, 11lmodcom 14095 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  ( Base `  W
)  /\  ( (
( invg `  (Scalar `  W ) ) `
 ( 1r `  (Scalar `  W ) ) ) ( .s `  W ) Y )  e.  ( Base `  W
) )  ->  ( X ( +g  `  W
) ( ( ( invg `  (Scalar `  W ) ) `  ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) Y ) )  =  ( ( ( ( invg `  (Scalar `  W ) ) `
 ( 1r `  (Scalar `  W ) ) ) ( .s `  W ) Y ) ( +g  `  W
) X ) )
291, 7, 27, 28syl3anc 1250 . . 3  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( X  e.  U  /\  Y  e.  U ) )  -> 
( X ( +g  `  W ) ( ( ( invg `  (Scalar `  W ) ) `
 ( 1r `  (Scalar `  W ) ) ) ( .s `  W ) Y ) )  =  ( ( ( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) Y ) ( +g  `  W
) X ) )
3013, 21, 11, 14, 5lssclg 14126 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S  /\  (
( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) )  e.  (
Base `  (Scalar `  W
) )  /\  Y  e.  U  /\  X  e.  U ) )  -> 
( ( ( ( invg `  (Scalar `  W ) ) `  ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) Y ) ( +g  `  W ) X )  e.  U
)
311, 2, 25, 8, 3, 30syl113anc 1262 . . 3  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( X  e.  U  /\  Y  e.  U ) )  -> 
( ( ( ( invg `  (Scalar `  W ) ) `  ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) Y ) ( +g  `  W ) X )  e.  U
)
3229, 31eqeltrd 2282 . 2  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( X  e.  U  /\  Y  e.  U ) )  -> 
( X ( +g  `  W ) ( ( ( invg `  (Scalar `  W ) ) `
 ( 1r `  (Scalar `  W ) ) ) ( .s `  W ) Y ) )  e.  U )
3318, 32eqeltrd 2282 1  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( X  e.  U  /\  Y  e.  U ) )  -> 
( X  .-  Y
)  e.  U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   ` cfv 5271  (class class class)co 5944   Basecbs 12832   +g cplusg 12909  Scalarcsca 12912   .scvsca 12913   Grpcgrp 13332   invgcminusg 13333   -gcsg 13334   1rcur 13721   LModclmod 14049   LSubSpclss 14114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-5 9098  df-6 9099  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-plusg 12922  df-mulr 12923  df-sca 12925  df-vsca 12926  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336  df-sbg 13337  df-mgp 13683  df-ur 13722  df-ring 13760  df-lmod 14051  df-lssm 14115
This theorem is referenced by:  lssvancl1  14129  lss0cl  14131
  Copyright terms: Public domain W3C validator