![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lt2addd | GIF version |
Description: Adding both side of two inequalities. Theorem I.25 of [Apostol] p. 20. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltadd1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
lt2addd.4 | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
lt2addd.5 | ⊢ (𝜑 → 𝐴 < 𝐶) |
lt2addd.6 | ⊢ (𝜑 → 𝐵 < 𝐷) |
Ref | Expression |
---|---|
lt2addd | ⊢ (𝜑 → (𝐴 + 𝐵) < (𝐶 + 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ltnegd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | ltadd1d.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
4 | lt2addd.4 | . 2 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
5 | lt2addd.5 | . 2 ⊢ (𝜑 → 𝐴 < 𝐶) | |
6 | lt2addd.6 | . . 3 ⊢ (𝜑 → 𝐵 < 𝐷) | |
7 | 2, 4, 6 | ltled 7798 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐷) |
8 | 1, 2, 3, 4, 5, 7 | ltleaddd 8239 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) < (𝐶 + 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1461 class class class wbr 3893 (class class class)co 5726 ℝcr 7540 + caddc 7544 < clt 7718 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-13 1472 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-sep 4004 ax-pow 4056 ax-pr 4089 ax-un 4313 ax-setind 4410 ax-cnex 7630 ax-resscn 7631 ax-1cn 7632 ax-icn 7634 ax-addcl 7635 ax-addrcl 7636 ax-mulcl 7637 ax-addcom 7639 ax-addass 7641 ax-i2m1 7644 ax-0id 7647 ax-rnegex 7648 ax-pre-ltirr 7651 ax-pre-ltwlin 7652 ax-pre-lttrn 7653 ax-pre-ltadd 7655 |
This theorem depends on definitions: df-bi 116 df-3an 945 df-tru 1315 df-fal 1318 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ne 2281 df-nel 2376 df-ral 2393 df-rex 2394 df-rab 2397 df-v 2657 df-dif 3037 df-un 3039 df-in 3041 df-ss 3048 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-br 3894 df-opab 3948 df-xp 4503 df-cnv 4505 df-iota 5044 df-fv 5087 df-ov 5729 df-pnf 7720 df-mnf 7721 df-xr 7722 df-ltxr 7723 df-le 7724 |
This theorem is referenced by: modaddmodup 10047 modsumfzodifsn 10056 resqrexlemnm 10676 mertenslemi1 11190 |
Copyright terms: Public domain | W3C validator |