ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gt0ne0d Unicode version

Theorem gt0ne0d 8499
Description: Positive implies nonzero. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
gt0ne0d.1  |-  ( ph  ->  0  <  A )
Assertion
Ref Expression
gt0ne0d  |-  ( ph  ->  A  =/=  0 )

Proof of Theorem gt0ne0d
StepHypRef Expression
1 0re 7987 . 2  |-  0  e.  RR
2 gt0ne0d.1 . 2  |-  ( ph  ->  0  <  A )
3 ltne 8072 . 2  |-  ( ( 0  e.  RR  /\  0  <  A )  ->  A  =/=  0 )
41, 2, 3sylancr 414 1  |-  ( ph  ->  A  =/=  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2160    =/= wne 2360   class class class wbr 4018   RRcr 7840   0cc0 7841    < clt 8022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7932  ax-resscn 7933  ax-1re 7935  ax-addrcl 7938  ax-rnegex 7950  ax-pre-ltirr 7953
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-xp 4650  df-pnf 8024  df-mnf 8025  df-ltxr 8027
This theorem is referenced by:  sup3exmid  8944  modqval  10355  modqvalr  10356  modqcl  10357  flqpmodeq  10358  modq0  10360  modqge0  10363  modqlt  10364  modqdiffl  10366  modqdifz  10367  modqvalp1  10374  modqid  10380  modqcyc  10390  modqadd1  10392  modqmuladd  10397  modqmuladdnn0  10399  modqmul1  10408  modqdi  10423  modqsubdir  10424  ennnfonelemp1  12457
  Copyright terms: Public domain W3C validator