ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gt0ne0d Unicode version

Theorem gt0ne0d 8468
Description: Positive implies nonzero. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
gt0ne0d.1  |-  ( ph  ->  0  <  A )
Assertion
Ref Expression
gt0ne0d  |-  ( ph  ->  A  =/=  0 )

Proof of Theorem gt0ne0d
StepHypRef Expression
1 0re 7956 . 2  |-  0  e.  RR
2 gt0ne0d.1 . 2  |-  ( ph  ->  0  <  A )
3 ltne 8041 . 2  |-  ( ( 0  e.  RR  /\  0  <  A )  ->  A  =/=  0 )
41, 2, 3sylancr 414 1  |-  ( ph  ->  A  =/=  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2148    =/= wne 2347   class class class wbr 4003   RRcr 7809   0cc0 7810    < clt 7991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1re 7904  ax-addrcl 7907  ax-rnegex 7919  ax-pre-ltirr 7922
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-opab 4065  df-xp 4632  df-pnf 7993  df-mnf 7994  df-ltxr 7996
This theorem is referenced by:  sup3exmid  8913  modqval  10323  modqvalr  10324  modqcl  10325  flqpmodeq  10326  modq0  10328  modqge0  10331  modqlt  10332  modqdiffl  10334  modqdifz  10335  modqvalp1  10342  modqid  10348  modqcyc  10358  modqadd1  10360  modqmuladd  10365  modqmuladdnn0  10367  modqmul1  10376  modqdi  10391  modqsubdir  10392  ennnfonelemp1  12406
  Copyright terms: Public domain W3C validator