ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metf Unicode version

Theorem metf 15019
Description: Mapping of the distance function of a metric space. (Contributed by NM, 30-Aug-2006.)
Assertion
Ref Expression
metf  |-  ( D  e.  ( Met `  X
)  ->  D :
( X  X.  X
) --> RR )

Proof of Theorem metf
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metflem 15017 . 2  |-  ( D  e.  ( Met `  X
)  ->  ( D : ( X  X.  X ) --> RR  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x )  +  ( z D y ) ) ) ) )
21simpld 112 1  |-  ( D  e.  ( Met `  X
)  ->  D :
( X  X.  X
) --> RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508   class class class wbr 4082    X. cxp 4716   -->wf 5313   ` cfv 5317  (class class class)co 6000   RRcr 7994   0cc0 7995    + caddc 7998    <_ cle 8178   Metcmet 14495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-map 6795  df-met 14503
This theorem is referenced by:  metcl  15021  metn0  15046  metres2  15049  metres  15051  msf  15130
  Copyright terms: Public domain W3C validator