| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mgpf | GIF version | ||
| Description: Restricted functionality of the multiplicative group on rings. (Contributed by Mario Carneiro, 11-Mar-2015.) |
| Ref | Expression |
|---|---|
| mgpf | ⊢ (mulGrp ↾ Ring):Ring⟶Mnd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmgp 13754 | . . 3 ⊢ mulGrp Fn V | |
| 2 | ssv 3219 | . . 3 ⊢ Ring ⊆ V | |
| 3 | fnssres 5397 | . . 3 ⊢ ((mulGrp Fn V ∧ Ring ⊆ V) → (mulGrp ↾ Ring) Fn Ring) | |
| 4 | 1, 2, 3 | mp2an 426 | . 2 ⊢ (mulGrp ↾ Ring) Fn Ring |
| 5 | fvres 5612 | . . . 4 ⊢ (𝑎 ∈ Ring → ((mulGrp ↾ Ring)‘𝑎) = (mulGrp‘𝑎)) | |
| 6 | eqid 2206 | . . . . 5 ⊢ (mulGrp‘𝑎) = (mulGrp‘𝑎) | |
| 7 | 6 | ringmgp 13834 | . . . 4 ⊢ (𝑎 ∈ Ring → (mulGrp‘𝑎) ∈ Mnd) |
| 8 | 5, 7 | eqeltrd 2283 | . . 3 ⊢ (𝑎 ∈ Ring → ((mulGrp ↾ Ring)‘𝑎) ∈ Mnd) |
| 9 | 8 | rgen 2560 | . 2 ⊢ ∀𝑎 ∈ Ring ((mulGrp ↾ Ring)‘𝑎) ∈ Mnd |
| 10 | ffnfv 5750 | . 2 ⊢ ((mulGrp ↾ Ring):Ring⟶Mnd ↔ ((mulGrp ↾ Ring) Fn Ring ∧ ∀𝑎 ∈ Ring ((mulGrp ↾ Ring)‘𝑎) ∈ Mnd)) | |
| 11 | 4, 9, 10 | mpbir2an 945 | 1 ⊢ (mulGrp ↾ Ring):Ring⟶Mnd |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 ∀wral 2485 Vcvv 2773 ⊆ wss 3170 ↾ cres 4684 Fn wfn 5274 ⟶wf 5275 ‘cfv 5279 Mndcmnd 13318 mulGrpcmgp 13752 Ringcrg 13828 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-cnex 8031 ax-resscn 8032 ax-1re 8034 ax-addrcl 8037 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-br 4051 df-opab 4113 df-mpt 4114 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-fv 5287 df-ov 5959 df-oprab 5960 df-mpo 5961 df-inn 9052 df-2 9110 df-3 9111 df-ndx 12905 df-slot 12906 df-base 12908 df-sets 12909 df-plusg 12992 df-mulr 12993 df-mgp 13753 df-ring 13830 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |