ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgpf GIF version

Theorem mgpf 13982
Description: Restricted functionality of the multiplicative group on rings. (Contributed by Mario Carneiro, 11-Mar-2015.)
Assertion
Ref Expression
mgpf (mulGrp ↾ Ring):Ring⟶Mnd

Proof of Theorem mgpf
StepHypRef Expression
1 fnmgp 13893 . . 3 mulGrp Fn V
2 ssv 3246 . . 3 Ring ⊆ V
3 fnssres 5436 . . 3 ((mulGrp Fn V ∧ Ring ⊆ V) → (mulGrp ↾ Ring) Fn Ring)
41, 2, 3mp2an 426 . 2 (mulGrp ↾ Ring) Fn Ring
5 fvres 5653 . . . 4 (𝑎 ∈ Ring → ((mulGrp ↾ Ring)‘𝑎) = (mulGrp‘𝑎))
6 eqid 2229 . . . . 5 (mulGrp‘𝑎) = (mulGrp‘𝑎)
76ringmgp 13973 . . . 4 (𝑎 ∈ Ring → (mulGrp‘𝑎) ∈ Mnd)
85, 7eqeltrd 2306 . . 3 (𝑎 ∈ Ring → ((mulGrp ↾ Ring)‘𝑎) ∈ Mnd)
98rgen 2583 . 2 𝑎 ∈ Ring ((mulGrp ↾ Ring)‘𝑎) ∈ Mnd
10 ffnfv 5795 . 2 ((mulGrp ↾ Ring):Ring⟶Mnd ↔ ((mulGrp ↾ Ring) Fn Ring ∧ ∀𝑎 ∈ Ring ((mulGrp ↾ Ring)‘𝑎) ∈ Mnd))
114, 9, 10mpbir2an 948 1 (mulGrp ↾ Ring):Ring⟶Mnd
Colors of variables: wff set class
Syntax hints:  wcel 2200  wral 2508  Vcvv 2799  wss 3197  cres 4721   Fn wfn 5313  wf 5314  cfv 5318  Mndcmnd 13457  mulGrpcmgp 13891  Ringcrg 13967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1re 8101  ax-addrcl 8104
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-inn 9119  df-2 9177  df-3 9178  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-plusg 13131  df-mulr 13132  df-mgp 13892  df-ring 13969
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator