ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgt1d Unicode version

Theorem mulgt1d 8906
Description: The product of two numbers greater than 1 is greater than 1. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
ltp1d.1  |-  ( ph  ->  A  e.  RR )
divgt0d.2  |-  ( ph  ->  B  e.  RR )
mulgt1d.3  |-  ( ph  ->  1  <  A )
mulgt1d.4  |-  ( ph  ->  1  <  B )
Assertion
Ref Expression
mulgt1d  |-  ( ph  ->  1  <  ( A  x.  B ) )

Proof of Theorem mulgt1d
StepHypRef Expression
1 ltp1d.1 . 2  |-  ( ph  ->  A  e.  RR )
2 divgt0d.2 . 2  |-  ( ph  ->  B  e.  RR )
3 mulgt1d.3 . 2  |-  ( ph  ->  1  <  A )
4 mulgt1d.4 . 2  |-  ( ph  ->  1  <  B )
5 mulgt1 8833 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 1  < 
A  /\  1  <  B ) )  ->  1  <  ( A  x.  B
) )
61, 2, 3, 4, 5syl22anc 1249 1  |-  ( ph  ->  1  <  ( A  x.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2158   class class class wbr 4015  (class class class)co 5888   RRcr 7823   1c1 7825    x. cmul 7829    < clt 8005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-mulrcl 7923  ax-addcom 7924  ax-mulcom 7925  ax-addass 7926  ax-mulass 7927  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-1rid 7931  ax-0id 7932  ax-rnegex 7933  ax-precex 7934  ax-cnre 7935  ax-pre-lttrn 7938  ax-pre-ltadd 7940  ax-pre-mulgt0 7941
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-iota 5190  df-fun 5230  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-pnf 8007  df-mnf 8008  df-ltxr 8010  df-sub 8143  df-neg 8144
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator