![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mullidi | Unicode version |
Description: Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
Ref | Expression |
---|---|
axi.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mullidi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | mullid 8019 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-resscn 7966 ax-1cn 7967 ax-icn 7969 ax-addcl 7970 ax-mulcl 7972 ax-mulcom 7975 ax-mulass 7977 ax-distr 7978 ax-1rid 7981 ax-cnre 7985 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-iota 5216 df-fv 5263 df-ov 5922 |
This theorem is referenced by: halfpm6th 9205 div4p1lem1div2 9239 3halfnz 9417 sq10 10786 fac2 10805 efival 11878 ef01bndlem 11902 3dvdsdec 12009 3dvds2dec 12010 odd2np1lem 12016 m1expo 12044 m1exp1 12045 nno 12050 sin2pim 14989 cos2pim 14990 sincosq3sgn 15004 sincosq4sgn 15005 cosq23lt0 15009 tangtx 15014 sincosq1eq 15015 sincos4thpi 15016 sincos6thpi 15018 abssinper 15022 cosq34lt1 15026 lgsdir2lem1 15185 lgsdir2lem4 15188 lgsdir2lem5 15189 2lgsoddprmlem3c 15266 ex-fl 15287 |
Copyright terms: Public domain | W3C validator |