| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mullidi | Unicode version | ||
| Description: Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
| Ref | Expression |
|---|---|
| axi.1 |
|
| Ref | Expression |
|---|---|
| mullidi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 |
. 2
| |
| 2 | mullid 8043 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7990 ax-1cn 7991 ax-icn 7993 ax-addcl 7994 ax-mulcl 7996 ax-mulcom 7999 ax-mulass 8001 ax-distr 8002 ax-1rid 8005 ax-cnre 8009 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 |
| This theorem is referenced by: halfpm6th 9230 div4p1lem1div2 9264 3halfnz 9442 sq10 10823 fac2 10842 efival 11916 ef01bndlem 11940 3dvdsdec 12049 3dvds2dec 12050 odd2np1lem 12056 m1expo 12084 m1exp1 12085 nno 12090 dec5nprm 12610 2exp8 12631 sin2pim 15157 cos2pim 15158 sincosq3sgn 15172 sincosq4sgn 15173 cosq23lt0 15177 tangtx 15182 sincosq1eq 15183 sincos4thpi 15184 sincos6thpi 15186 abssinper 15190 cosq34lt1 15194 lgsdir2lem1 15377 lgsdir2lem4 15380 lgsdir2lem5 15381 2lgsoddprmlem3c 15458 ex-fl 15479 |
| Copyright terms: Public domain | W3C validator |