![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mullidi | Unicode version |
Description: Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
Ref | Expression |
---|---|
axi.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mullidi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | mullid 8017 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-resscn 7964 ax-1cn 7965 ax-icn 7967 ax-addcl 7968 ax-mulcl 7970 ax-mulcom 7973 ax-mulass 7975 ax-distr 7976 ax-1rid 7979 ax-cnre 7983 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-iota 5215 df-fv 5262 df-ov 5921 |
This theorem is referenced by: halfpm6th 9202 div4p1lem1div2 9236 3halfnz 9414 sq10 10783 fac2 10802 efival 11875 ef01bndlem 11899 3dvdsdec 12006 3dvds2dec 12007 odd2np1lem 12013 m1expo 12041 m1exp1 12042 nno 12047 sin2pim 14948 cos2pim 14949 sincosq3sgn 14963 sincosq4sgn 14964 cosq23lt0 14968 tangtx 14973 sincosq1eq 14974 sincos4thpi 14975 sincos6thpi 14977 abssinper 14981 cosq34lt1 14985 lgsdir2lem1 15144 lgsdir2lem4 15147 lgsdir2lem5 15148 2lgsoddprmlem3c 15197 ex-fl 15217 |
Copyright terms: Public domain | W3C validator |