| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mullidi | Unicode version | ||
| Description: Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
| Ref | Expression |
|---|---|
| axi.1 |
|
| Ref | Expression |
|---|---|
| mullidi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 |
. 2
| |
| 2 | mullid 8105 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-resscn 8052 ax-1cn 8053 ax-icn 8055 ax-addcl 8056 ax-mulcl 8058 ax-mulcom 8061 ax-mulass 8063 ax-distr 8064 ax-1rid 8067 ax-cnre 8071 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 |
| This theorem is referenced by: halfpm6th 9292 div4p1lem1div2 9326 3halfnz 9505 sq10 10894 fac2 10913 efival 12158 ef01bndlem 12182 3dvdsdec 12291 3dvds2dec 12292 odd2np1lem 12298 m1expo 12326 m1exp1 12327 nno 12332 dec5nprm 12852 2exp8 12873 sin2pim 15400 cos2pim 15401 sincosq3sgn 15415 sincosq4sgn 15416 cosq23lt0 15420 tangtx 15425 sincosq1eq 15426 sincos4thpi 15427 sincos6thpi 15429 abssinper 15433 cosq34lt1 15437 lgsdir2lem1 15620 lgsdir2lem4 15623 lgsdir2lem5 15624 2lgsoddprmlem3c 15701 ex-fl 15861 |
| Copyright terms: Public domain | W3C validator |