![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mullidi | Unicode version |
Description: Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
Ref | Expression |
---|---|
axi.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mullidi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | mullid 7958 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-resscn 7906 ax-1cn 7907 ax-icn 7909 ax-addcl 7910 ax-mulcl 7912 ax-mulcom 7915 ax-mulass 7917 ax-distr 7918 ax-1rid 7921 ax-cnre 7925 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-iota 5180 df-fv 5226 df-ov 5881 |
This theorem is referenced by: halfpm6th 9142 div4p1lem1div2 9175 3halfnz 9353 sq10 10695 fac2 10714 efival 11743 ef01bndlem 11767 3dvdsdec 11873 3dvds2dec 11874 odd2np1lem 11880 m1expo 11908 m1exp1 11909 nno 11914 sin2pim 14422 cos2pim 14423 sincosq3sgn 14437 sincosq4sgn 14438 cosq23lt0 14442 tangtx 14447 sincosq1eq 14448 sincos4thpi 14449 sincos6thpi 14451 abssinper 14455 cosq34lt1 14459 lgsdir2lem1 14617 lgsdir2lem4 14620 lgsdir2lem5 14621 2lgsoddprmlem3c 14645 ex-fl 14665 |
Copyright terms: Public domain | W3C validator |