| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mullidi | Unicode version | ||
| Description: Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
| Ref | Expression |
|---|---|
| axi.1 |
|
| Ref | Expression |
|---|---|
| mullidi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 |
. 2
| |
| 2 | mullid 8026 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7973 ax-1cn 7974 ax-icn 7976 ax-addcl 7977 ax-mulcl 7979 ax-mulcom 7982 ax-mulass 7984 ax-distr 7985 ax-1rid 7988 ax-cnre 7992 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5926 |
| This theorem is referenced by: halfpm6th 9213 div4p1lem1div2 9247 3halfnz 9425 sq10 10806 fac2 10825 efival 11899 ef01bndlem 11923 3dvdsdec 12032 3dvds2dec 12033 odd2np1lem 12039 m1expo 12067 m1exp1 12068 nno 12073 dec5nprm 12593 2exp8 12614 sin2pim 15059 cos2pim 15060 sincosq3sgn 15074 sincosq4sgn 15075 cosq23lt0 15079 tangtx 15084 sincosq1eq 15085 sincos4thpi 15086 sincos6thpi 15088 abssinper 15092 cosq34lt1 15096 lgsdir2lem1 15279 lgsdir2lem4 15282 lgsdir2lem5 15283 2lgsoddprmlem3c 15360 ex-fl 15381 |
| Copyright terms: Public domain | W3C validator |