| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mullidi | Unicode version | ||
| Description: Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
| Ref | Expression |
|---|---|
| axi.1 |
|
| Ref | Expression |
|---|---|
| mullidi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 |
. 2
| |
| 2 | mullid 8070 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-resscn 8017 ax-1cn 8018 ax-icn 8020 ax-addcl 8021 ax-mulcl 8023 ax-mulcom 8026 ax-mulass 8028 ax-distr 8029 ax-1rid 8032 ax-cnre 8036 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 |
| This theorem is referenced by: halfpm6th 9257 div4p1lem1div2 9291 3halfnz 9470 sq10 10857 fac2 10876 efival 12043 ef01bndlem 12067 3dvdsdec 12176 3dvds2dec 12177 odd2np1lem 12183 m1expo 12211 m1exp1 12212 nno 12217 dec5nprm 12737 2exp8 12758 sin2pim 15285 cos2pim 15286 sincosq3sgn 15300 sincosq4sgn 15301 cosq23lt0 15305 tangtx 15310 sincosq1eq 15311 sincos4thpi 15312 sincos6thpi 15314 abssinper 15318 cosq34lt1 15322 lgsdir2lem1 15505 lgsdir2lem4 15508 lgsdir2lem5 15509 2lgsoddprmlem3c 15586 ex-fl 15661 |
| Copyright terms: Public domain | W3C validator |