| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mullidi | Unicode version | ||
| Description: Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
| Ref | Expression |
|---|---|
| axi.1 |
|
| Ref | Expression |
|---|---|
| mullidi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 |
. 2
| |
| 2 | mullid 8144 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-resscn 8091 ax-1cn 8092 ax-icn 8094 ax-addcl 8095 ax-mulcl 8097 ax-mulcom 8100 ax-mulass 8102 ax-distr 8103 ax-1rid 8106 ax-cnre 8110 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6004 |
| This theorem is referenced by: halfpm6th 9331 div4p1lem1div2 9365 3halfnz 9544 sq10 10934 fac2 10953 efival 12243 ef01bndlem 12267 3dvdsdec 12376 3dvds2dec 12377 odd2np1lem 12383 m1expo 12411 m1exp1 12412 nno 12417 dec5nprm 12937 2exp8 12958 sin2pim 15487 cos2pim 15488 sincosq3sgn 15502 sincosq4sgn 15503 cosq23lt0 15507 tangtx 15512 sincosq1eq 15513 sincos4thpi 15514 sincos6thpi 15516 abssinper 15520 cosq34lt1 15524 lgsdir2lem1 15707 lgsdir2lem4 15710 lgsdir2lem5 15711 2lgsoddprmlem3c 15788 ex-fl 16089 |
| Copyright terms: Public domain | W3C validator |