ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negsubdi GIF version

Theorem negsubdi 7982
Description: Distribution of negative over subtraction. (Contributed by NM, 15-Nov-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
negsubdi ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴𝐵) = (-𝐴 + 𝐵))

Proof of Theorem negsubdi
StepHypRef Expression
1 0cn 7722 . . 3 0 ∈ ℂ
2 subsub 7956 . . 3 ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (0 − (𝐴𝐵)) = ((0 − 𝐴) + 𝐵))
31, 2mp3an1 1285 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (0 − (𝐴𝐵)) = ((0 − 𝐴) + 𝐵))
4 df-neg 7900 . 2 -(𝐴𝐵) = (0 − (𝐴𝐵))
5 df-neg 7900 . . 3 -𝐴 = (0 − 𝐴)
65oveq1i 5750 . 2 (-𝐴 + 𝐵) = ((0 − 𝐴) + 𝐵)
73, 4, 63eqtr4g 2173 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴𝐵) = (-𝐴 + 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1314  wcel 1463  (class class class)co 5740  cc 7582  0cc0 7584   + caddc 7587  cmin 7897  -cneg 7898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-setind 4420  ax-resscn 7676  ax-1cn 7677  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-addcom 7684  ax-addass 7686  ax-distr 7688  ax-i2m1 7689  ax-0id 7692  ax-rnegex 7693  ax-cnre 7695
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-opab 3958  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-iota 5056  df-fun 5093  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-sub 7899  df-neg 7900
This theorem is referenced by:  negdi  7983  negsubdi2  7985  neg2sub  7986  negsubdid  8052  odd2np1  11477
  Copyright terms: Public domain W3C validator