Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0addcld | Unicode version |
Description: Closure of addition of nonnegative integers, inference form. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nn0red.1 | |
nn0addcld.2 |
Ref | Expression |
---|---|
nn0addcld |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0red.1 | . 2 | |
2 | nn0addcld.2 | . 2 | |
3 | nn0addcl 9170 | . 2 | |
4 | 1, 2, 3 | syl2anc 409 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2141 (class class class)co 5853 caddc 7777 cn0 9135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4107 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-i2m1 7879 ax-0id 7882 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 df-inn 8879 df-n0 9136 |
This theorem is referenced by: modsumfzodifsn 10352 expaddzap 10520 nn0opthlem1d 10654 nn0opthlem2d 10655 nn0opthd 10656 nn0opth2d 10657 bccl 10701 mertenslemi1 11498 pcpremul 12247 gzabssqcl 12333 4sqlem2 12341 mul4sq 12346 2sqlem8 13753 |
Copyright terms: Public domain | W3C validator |