ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0addcld Unicode version

Theorem nn0addcld 9354
Description: Closure of addition of nonnegative integers, inference form. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
nn0red.1  |-  ( ph  ->  A  e.  NN0 )
nn0addcld.2  |-  ( ph  ->  B  e.  NN0 )
Assertion
Ref Expression
nn0addcld  |-  ( ph  ->  ( A  +  B
)  e.  NN0 )

Proof of Theorem nn0addcld
StepHypRef Expression
1 nn0red.1 . 2  |-  ( ph  ->  A  e.  NN0 )
2 nn0addcld.2 . 2  |-  ( ph  ->  B  e.  NN0 )
3 nn0addcl 9332 . 2  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( A  +  B
)  e.  NN0 )
41, 2, 3syl2anc 411 1  |-  ( ph  ->  ( A  +  B
)  e.  NN0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2176  (class class class)co 5946    + caddc 7930   NN0cn0 9297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-sep 4163  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-i2m1 8032  ax-0id 8035
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-iota 5233  df-fv 5280  df-ov 5949  df-inn 9039  df-n0 9298
This theorem is referenced by:  modsumfzodifsn  10543  expaddzap  10730  nn0opthlem1d  10867  nn0opthlem2d  10868  nn0opthd  10869  nn0opth2d  10870  bccl  10914  ccatfvalfi  11051  ccatcl  11052  swrdccat2  11127  mertenslemi1  11879  bitsmod  12300  bitsinv1lem  12305  pcpremul  12649  gzabssqcl  12737  4sqlem2  12745  mul4sq  12750  4sqlemsdc  12756  4sqlem12  12758  4sqlem14  12760  4sqlem16  12762  mplsubgfilemcl  14494  plymullem  15255  lgseisenlem2  15581  2sqlem8  15633
  Copyright terms: Public domain W3C validator