![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0addcld | Unicode version |
Description: Closure of addition of nonnegative integers, inference form. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nn0red.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
nn0addcld.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nn0addcld |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0red.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | nn0addcld.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | nn0addcl 9278 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | syl2anc 411 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4148 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-i2m1 7979 ax-0id 7982 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-iota 5216 df-fv 5263 df-ov 5922 df-inn 8985 df-n0 9244 |
This theorem is referenced by: modsumfzodifsn 10470 expaddzap 10657 nn0opthlem1d 10794 nn0opthlem2d 10795 nn0opthd 10796 nn0opth2d 10797 bccl 10841 mertenslemi1 11681 pcpremul 12434 gzabssqcl 12522 4sqlem2 12530 mul4sq 12535 4sqlemsdc 12541 4sqlem12 12543 4sqlem14 12545 4sqlem16 12547 plymullem 14929 lgseisenlem2 15228 2sqlem8 15280 |
Copyright terms: Public domain | W3C validator |