Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0addcld | Unicode version |
Description: Closure of addition of nonnegative integers, inference form. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nn0red.1 | |
nn0addcld.2 |
Ref | Expression |
---|---|
nn0addcld |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0red.1 | . 2 | |
2 | nn0addcld.2 | . 2 | |
3 | nn0addcl 9145 | . 2 | |
4 | 1, 2, 3 | syl2anc 409 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2136 (class class class)co 5841 caddc 7752 cn0 9110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4099 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-addcom 7849 ax-addass 7851 ax-i2m1 7854 ax-0id 7857 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-rab 2452 df-v 2727 df-un 3119 df-in 3121 df-ss 3128 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-br 3982 df-iota 5152 df-fv 5195 df-ov 5844 df-inn 8854 df-n0 9111 |
This theorem is referenced by: modsumfzodifsn 10327 expaddzap 10495 nn0opthlem1d 10629 nn0opthlem2d 10630 nn0opthd 10631 nn0opth2d 10632 bccl 10676 mertenslemi1 11472 pcpremul 12221 gzabssqcl 12307 4sqlem2 12315 mul4sq 12320 2sqlem8 13559 |
Copyright terms: Public domain | W3C validator |