ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0opthlem1d Unicode version

Theorem nn0opthlem1d 10865
Description: A rather pretty lemma for nn0opth2 10869. (Contributed by Jim Kingdon, 31-Oct-2021.)
Hypotheses
Ref Expression
nn0opthlem1d.1  |-  ( ph  ->  A  e.  NN0 )
nn0opthlem1d.2  |-  ( ph  ->  C  e.  NN0 )
Assertion
Ref Expression
nn0opthlem1d  |-  ( ph  ->  ( A  <  C  <->  ( ( A  x.  A
)  +  ( 2  x.  A ) )  <  ( C  x.  C ) ) )

Proof of Theorem nn0opthlem1d
StepHypRef Expression
1 nn0opthlem1d.1 . . . 4  |-  ( ph  ->  A  e.  NN0 )
2 1nn0 9311 . . . . 5  |-  1  e.  NN0
32a1i 9 . . . 4  |-  ( ph  ->  1  e.  NN0 )
41, 3nn0addcld 9352 . . 3  |-  ( ph  ->  ( A  +  1 )  e.  NN0 )
5 nn0opthlem1d.2 . . 3  |-  ( ph  ->  C  e.  NN0 )
64, 5nn0le2msqd 10864 . 2  |-  ( ph  ->  ( ( A  + 
1 )  <_  C  <->  ( ( A  +  1 )  x.  ( A  +  1 ) )  <_  ( C  x.  C ) ) )
7 nn0ltp1le 9435 . . 3  |-  ( ( A  e.  NN0  /\  C  e.  NN0 )  -> 
( A  <  C  <->  ( A  +  1 )  <_  C ) )
81, 5, 7syl2anc 411 . 2  |-  ( ph  ->  ( A  <  C  <->  ( A  +  1 )  <_  C ) )
91, 1nn0mulcld 9353 . . . . 5  |-  ( ph  ->  ( A  x.  A
)  e.  NN0 )
10 2nn0 9312 . . . . . . 7  |-  2  e.  NN0
1110a1i 9 . . . . . 6  |-  ( ph  ->  2  e.  NN0 )
1211, 1nn0mulcld 9353 . . . . 5  |-  ( ph  ->  ( 2  x.  A
)  e.  NN0 )
139, 12nn0addcld 9352 . . . 4  |-  ( ph  ->  ( ( A  x.  A )  +  ( 2  x.  A ) )  e.  NN0 )
145, 5nn0mulcld 9353 . . . 4  |-  ( ph  ->  ( C  x.  C
)  e.  NN0 )
15 nn0ltp1le 9435 . . . 4  |-  ( ( ( ( A  x.  A )  +  ( 2  x.  A ) )  e.  NN0  /\  ( C  x.  C
)  e.  NN0 )  ->  ( ( ( A  x.  A )  +  ( 2  x.  A
) )  <  ( C  x.  C )  <->  ( ( ( A  x.  A )  +  ( 2  x.  A ) )  +  1 )  <_  ( C  x.  C ) ) )
1613, 14, 15syl2anc 411 . . 3  |-  ( ph  ->  ( ( ( A  x.  A )  +  ( 2  x.  A
) )  <  ( C  x.  C )  <->  ( ( ( A  x.  A )  +  ( 2  x.  A ) )  +  1 )  <_  ( C  x.  C ) ) )
171nn0cnd 9350 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
18 1cnd 8088 . . . . . . 7  |-  ( ph  ->  1  e.  CC )
19 binom2 10796 . . . . . . 7  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( ( A  + 
1 ) ^ 2 )  =  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  1 ) ) )  +  ( 1 ^ 2 ) ) )
2017, 18, 19syl2anc 411 . . . . . 6  |-  ( ph  ->  ( ( A  + 
1 ) ^ 2 )  =  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  1 ) ) )  +  ( 1 ^ 2 ) ) )
2117, 18addcld 8092 . . . . . . 7  |-  ( ph  ->  ( A  +  1 )  e.  CC )
2221sqvald 10815 . . . . . 6  |-  ( ph  ->  ( ( A  + 
1 ) ^ 2 )  =  ( ( A  +  1 )  x.  ( A  + 
1 ) ) )
2317sqvald 10815 . . . . . . . 8  |-  ( ph  ->  ( A ^ 2 )  =  ( A  x.  A ) )
2423oveq1d 5959 . . . . . . 7  |-  ( ph  ->  ( ( A ^
2 )  +  ( 2  x.  ( A  x.  1 ) ) )  =  ( ( A  x.  A )  +  ( 2  x.  ( A  x.  1 ) ) ) )
2518sqvald 10815 . . . . . . 7  |-  ( ph  ->  ( 1 ^ 2 )  =  ( 1  x.  1 ) )
2624, 25oveq12d 5962 . . . . . 6  |-  ( ph  ->  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  1 ) ) )  +  ( 1 ^ 2 ) )  =  ( ( ( A  x.  A
)  +  ( 2  x.  ( A  x.  1 ) ) )  +  ( 1  x.  1 ) ) )
2720, 22, 263eqtr3d 2246 . . . . 5  |-  ( ph  ->  ( ( A  + 
1 )  x.  ( A  +  1 ) )  =  ( ( ( A  x.  A
)  +  ( 2  x.  ( A  x.  1 ) ) )  +  ( 1  x.  1 ) ) )
2817mulridd 8089 . . . . . . . 8  |-  ( ph  ->  ( A  x.  1 )  =  A )
2928oveq2d 5960 . . . . . . 7  |-  ( ph  ->  ( 2  x.  ( A  x.  1 ) )  =  ( 2  x.  A ) )
3029oveq2d 5960 . . . . . 6  |-  ( ph  ->  ( ( A  x.  A )  +  ( 2  x.  ( A  x.  1 ) ) )  =  ( ( A  x.  A )  +  ( 2  x.  A ) ) )
3118mulridd 8089 . . . . . 6  |-  ( ph  ->  ( 1  x.  1 )  =  1 )
3230, 31oveq12d 5962 . . . . 5  |-  ( ph  ->  ( ( ( A  x.  A )  +  ( 2  x.  ( A  x.  1 ) ) )  +  ( 1  x.  1 ) )  =  ( ( ( A  x.  A
)  +  ( 2  x.  A ) )  +  1 ) )
3327, 32eqtrd 2238 . . . 4  |-  ( ph  ->  ( ( A  + 
1 )  x.  ( A  +  1 ) )  =  ( ( ( A  x.  A
)  +  ( 2  x.  A ) )  +  1 ) )
3433breq1d 4054 . . 3  |-  ( ph  ->  ( ( ( A  +  1 )  x.  ( A  +  1 ) )  <_  ( C  x.  C )  <->  ( ( ( A  x.  A )  +  ( 2  x.  A ) )  +  1 )  <_  ( C  x.  C ) ) )
3516, 34bitr4d 191 . 2  |-  ( ph  ->  ( ( ( A  x.  A )  +  ( 2  x.  A
) )  <  ( C  x.  C )  <->  ( ( A  +  1 )  x.  ( A  +  1 ) )  <_  ( C  x.  C ) ) )
366, 8, 353bitr4d 220 1  |-  ( ph  ->  ( A  <  C  <->  ( ( A  x.  A
)  +  ( 2  x.  A ) )  <  ( C  x.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2176   class class class wbr 4044  (class class class)co 5944   CCcc 7923   1c1 7926    + caddc 7928    x. cmul 7930    < clt 8107    <_ cle 8108   2c2 9087   NN0cn0 9295   ^cexp 10683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-n0 9296  df-z 9373  df-uz 9649  df-seqfrec 10593  df-exp 10684
This theorem is referenced by:  nn0opthlem2d  10866
  Copyright terms: Public domain W3C validator