ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0opthlem1d Unicode version

Theorem nn0opthlem1d 10633
Description: A rather pretty lemma for nn0opth2 10637. (Contributed by Jim Kingdon, 31-Oct-2021.)
Hypotheses
Ref Expression
nn0opthlem1d.1  |-  ( ph  ->  A  e.  NN0 )
nn0opthlem1d.2  |-  ( ph  ->  C  e.  NN0 )
Assertion
Ref Expression
nn0opthlem1d  |-  ( ph  ->  ( A  <  C  <->  ( ( A  x.  A
)  +  ( 2  x.  A ) )  <  ( C  x.  C ) ) )

Proof of Theorem nn0opthlem1d
StepHypRef Expression
1 nn0opthlem1d.1 . . . 4  |-  ( ph  ->  A  e.  NN0 )
2 1nn0 9130 . . . . 5  |-  1  e.  NN0
32a1i 9 . . . 4  |-  ( ph  ->  1  e.  NN0 )
41, 3nn0addcld 9171 . . 3  |-  ( ph  ->  ( A  +  1 )  e.  NN0 )
5 nn0opthlem1d.2 . . 3  |-  ( ph  ->  C  e.  NN0 )
64, 5nn0le2msqd 10632 . 2  |-  ( ph  ->  ( ( A  + 
1 )  <_  C  <->  ( ( A  +  1 )  x.  ( A  +  1 ) )  <_  ( C  x.  C ) ) )
7 nn0ltp1le 9253 . . 3  |-  ( ( A  e.  NN0  /\  C  e.  NN0 )  -> 
( A  <  C  <->  ( A  +  1 )  <_  C ) )
81, 5, 7syl2anc 409 . 2  |-  ( ph  ->  ( A  <  C  <->  ( A  +  1 )  <_  C ) )
91, 1nn0mulcld 9172 . . . . 5  |-  ( ph  ->  ( A  x.  A
)  e.  NN0 )
10 2nn0 9131 . . . . . . 7  |-  2  e.  NN0
1110a1i 9 . . . . . 6  |-  ( ph  ->  2  e.  NN0 )
1211, 1nn0mulcld 9172 . . . . 5  |-  ( ph  ->  ( 2  x.  A
)  e.  NN0 )
139, 12nn0addcld 9171 . . . 4  |-  ( ph  ->  ( ( A  x.  A )  +  ( 2  x.  A ) )  e.  NN0 )
145, 5nn0mulcld 9172 . . . 4  |-  ( ph  ->  ( C  x.  C
)  e.  NN0 )
15 nn0ltp1le 9253 . . . 4  |-  ( ( ( ( A  x.  A )  +  ( 2  x.  A ) )  e.  NN0  /\  ( C  x.  C
)  e.  NN0 )  ->  ( ( ( A  x.  A )  +  ( 2  x.  A
) )  <  ( C  x.  C )  <->  ( ( ( A  x.  A )  +  ( 2  x.  A ) )  +  1 )  <_  ( C  x.  C ) ) )
1613, 14, 15syl2anc 409 . . 3  |-  ( ph  ->  ( ( ( A  x.  A )  +  ( 2  x.  A
) )  <  ( C  x.  C )  <->  ( ( ( A  x.  A )  +  ( 2  x.  A ) )  +  1 )  <_  ( C  x.  C ) ) )
171nn0cnd 9169 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
18 1cnd 7915 . . . . . . 7  |-  ( ph  ->  1  e.  CC )
19 binom2 10566 . . . . . . 7  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( ( A  + 
1 ) ^ 2 )  =  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  1 ) ) )  +  ( 1 ^ 2 ) ) )
2017, 18, 19syl2anc 409 . . . . . 6  |-  ( ph  ->  ( ( A  + 
1 ) ^ 2 )  =  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  1 ) ) )  +  ( 1 ^ 2 ) ) )
2117, 18addcld 7918 . . . . . . 7  |-  ( ph  ->  ( A  +  1 )  e.  CC )
2221sqvald 10585 . . . . . 6  |-  ( ph  ->  ( ( A  + 
1 ) ^ 2 )  =  ( ( A  +  1 )  x.  ( A  + 
1 ) ) )
2317sqvald 10585 . . . . . . . 8  |-  ( ph  ->  ( A ^ 2 )  =  ( A  x.  A ) )
2423oveq1d 5857 . . . . . . 7  |-  ( ph  ->  ( ( A ^
2 )  +  ( 2  x.  ( A  x.  1 ) ) )  =  ( ( A  x.  A )  +  ( 2  x.  ( A  x.  1 ) ) ) )
2518sqvald 10585 . . . . . . 7  |-  ( ph  ->  ( 1 ^ 2 )  =  ( 1  x.  1 ) )
2624, 25oveq12d 5860 . . . . . 6  |-  ( ph  ->  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  1 ) ) )  +  ( 1 ^ 2 ) )  =  ( ( ( A  x.  A
)  +  ( 2  x.  ( A  x.  1 ) ) )  +  ( 1  x.  1 ) ) )
2720, 22, 263eqtr3d 2206 . . . . 5  |-  ( ph  ->  ( ( A  + 
1 )  x.  ( A  +  1 ) )  =  ( ( ( A  x.  A
)  +  ( 2  x.  ( A  x.  1 ) ) )  +  ( 1  x.  1 ) ) )
2817mulid1d 7916 . . . . . . . 8  |-  ( ph  ->  ( A  x.  1 )  =  A )
2928oveq2d 5858 . . . . . . 7  |-  ( ph  ->  ( 2  x.  ( A  x.  1 ) )  =  ( 2  x.  A ) )
3029oveq2d 5858 . . . . . 6  |-  ( ph  ->  ( ( A  x.  A )  +  ( 2  x.  ( A  x.  1 ) ) )  =  ( ( A  x.  A )  +  ( 2  x.  A ) ) )
3118mulid1d 7916 . . . . . 6  |-  ( ph  ->  ( 1  x.  1 )  =  1 )
3230, 31oveq12d 5860 . . . . 5  |-  ( ph  ->  ( ( ( A  x.  A )  +  ( 2  x.  ( A  x.  1 ) ) )  +  ( 1  x.  1 ) )  =  ( ( ( A  x.  A
)  +  ( 2  x.  A ) )  +  1 ) )
3327, 32eqtrd 2198 . . . 4  |-  ( ph  ->  ( ( A  + 
1 )  x.  ( A  +  1 ) )  =  ( ( ( A  x.  A
)  +  ( 2  x.  A ) )  +  1 ) )
3433breq1d 3992 . . 3  |-  ( ph  ->  ( ( ( A  +  1 )  x.  ( A  +  1 ) )  <_  ( C  x.  C )  <->  ( ( ( A  x.  A )  +  ( 2  x.  A ) )  +  1 )  <_  ( C  x.  C ) ) )
3516, 34bitr4d 190 . 2  |-  ( ph  ->  ( ( ( A  x.  A )  +  ( 2  x.  A
) )  <  ( C  x.  C )  <->  ( ( A  +  1 )  x.  ( A  +  1 ) )  <_  ( C  x.  C ) ) )
366, 8, 353bitr4d 219 1  |-  ( ph  ->  ( A  <  C  <->  ( ( A  x.  A
)  +  ( 2  x.  A ) )  <  ( C  x.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343    e. wcel 2136   class class class wbr 3982  (class class class)co 5842   CCcc 7751   1c1 7754    + caddc 7756    x. cmul 7758    < clt 7933    <_ cle 7934   2c2 8908   NN0cn0 9114   ^cexp 10454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-n0 9115  df-z 9192  df-uz 9467  df-seqfrec 10381  df-exp 10455
This theorem is referenced by:  nn0opthlem2d  10634
  Copyright terms: Public domain W3C validator