ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0opthlem1d Unicode version

Theorem nn0opthlem1d 10622
Description: A rather pretty lemma for nn0opth2 10626. (Contributed by Jim Kingdon, 31-Oct-2021.)
Hypotheses
Ref Expression
nn0opthlem1d.1  |-  ( ph  ->  A  e.  NN0 )
nn0opthlem1d.2  |-  ( ph  ->  C  e.  NN0 )
Assertion
Ref Expression
nn0opthlem1d  |-  ( ph  ->  ( A  <  C  <->  ( ( A  x.  A
)  +  ( 2  x.  A ) )  <  ( C  x.  C ) ) )

Proof of Theorem nn0opthlem1d
StepHypRef Expression
1 nn0opthlem1d.1 . . . 4  |-  ( ph  ->  A  e.  NN0 )
2 1nn0 9121 . . . . 5  |-  1  e.  NN0
32a1i 9 . . . 4  |-  ( ph  ->  1  e.  NN0 )
41, 3nn0addcld 9162 . . 3  |-  ( ph  ->  ( A  +  1 )  e.  NN0 )
5 nn0opthlem1d.2 . . 3  |-  ( ph  ->  C  e.  NN0 )
64, 5nn0le2msqd 10621 . 2  |-  ( ph  ->  ( ( A  + 
1 )  <_  C  <->  ( ( A  +  1 )  x.  ( A  +  1 ) )  <_  ( C  x.  C ) ) )
7 nn0ltp1le 9244 . . 3  |-  ( ( A  e.  NN0  /\  C  e.  NN0 )  -> 
( A  <  C  <->  ( A  +  1 )  <_  C ) )
81, 5, 7syl2anc 409 . 2  |-  ( ph  ->  ( A  <  C  <->  ( A  +  1 )  <_  C ) )
91, 1nn0mulcld 9163 . . . . 5  |-  ( ph  ->  ( A  x.  A
)  e.  NN0 )
10 2nn0 9122 . . . . . . 7  |-  2  e.  NN0
1110a1i 9 . . . . . 6  |-  ( ph  ->  2  e.  NN0 )
1211, 1nn0mulcld 9163 . . . . 5  |-  ( ph  ->  ( 2  x.  A
)  e.  NN0 )
139, 12nn0addcld 9162 . . . 4  |-  ( ph  ->  ( ( A  x.  A )  +  ( 2  x.  A ) )  e.  NN0 )
145, 5nn0mulcld 9163 . . . 4  |-  ( ph  ->  ( C  x.  C
)  e.  NN0 )
15 nn0ltp1le 9244 . . . 4  |-  ( ( ( ( A  x.  A )  +  ( 2  x.  A ) )  e.  NN0  /\  ( C  x.  C
)  e.  NN0 )  ->  ( ( ( A  x.  A )  +  ( 2  x.  A
) )  <  ( C  x.  C )  <->  ( ( ( A  x.  A )  +  ( 2  x.  A ) )  +  1 )  <_  ( C  x.  C ) ) )
1613, 14, 15syl2anc 409 . . 3  |-  ( ph  ->  ( ( ( A  x.  A )  +  ( 2  x.  A
) )  <  ( C  x.  C )  <->  ( ( ( A  x.  A )  +  ( 2  x.  A ) )  +  1 )  <_  ( C  x.  C ) ) )
171nn0cnd 9160 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
18 1cnd 7906 . . . . . . 7  |-  ( ph  ->  1  e.  CC )
19 binom2 10555 . . . . . . 7  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( ( A  + 
1 ) ^ 2 )  =  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  1 ) ) )  +  ( 1 ^ 2 ) ) )
2017, 18, 19syl2anc 409 . . . . . 6  |-  ( ph  ->  ( ( A  + 
1 ) ^ 2 )  =  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  1 ) ) )  +  ( 1 ^ 2 ) ) )
2117, 18addcld 7909 . . . . . . 7  |-  ( ph  ->  ( A  +  1 )  e.  CC )
2221sqvald 10574 . . . . . 6  |-  ( ph  ->  ( ( A  + 
1 ) ^ 2 )  =  ( ( A  +  1 )  x.  ( A  + 
1 ) ) )
2317sqvald 10574 . . . . . . . 8  |-  ( ph  ->  ( A ^ 2 )  =  ( A  x.  A ) )
2423oveq1d 5851 . . . . . . 7  |-  ( ph  ->  ( ( A ^
2 )  +  ( 2  x.  ( A  x.  1 ) ) )  =  ( ( A  x.  A )  +  ( 2  x.  ( A  x.  1 ) ) ) )
2518sqvald 10574 . . . . . . 7  |-  ( ph  ->  ( 1 ^ 2 )  =  ( 1  x.  1 ) )
2624, 25oveq12d 5854 . . . . . 6  |-  ( ph  ->  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  1 ) ) )  +  ( 1 ^ 2 ) )  =  ( ( ( A  x.  A
)  +  ( 2  x.  ( A  x.  1 ) ) )  +  ( 1  x.  1 ) ) )
2720, 22, 263eqtr3d 2205 . . . . 5  |-  ( ph  ->  ( ( A  + 
1 )  x.  ( A  +  1 ) )  =  ( ( ( A  x.  A
)  +  ( 2  x.  ( A  x.  1 ) ) )  +  ( 1  x.  1 ) ) )
2817mulid1d 7907 . . . . . . . 8  |-  ( ph  ->  ( A  x.  1 )  =  A )
2928oveq2d 5852 . . . . . . 7  |-  ( ph  ->  ( 2  x.  ( A  x.  1 ) )  =  ( 2  x.  A ) )
3029oveq2d 5852 . . . . . 6  |-  ( ph  ->  ( ( A  x.  A )  +  ( 2  x.  ( A  x.  1 ) ) )  =  ( ( A  x.  A )  +  ( 2  x.  A ) ) )
3118mulid1d 7907 . . . . . 6  |-  ( ph  ->  ( 1  x.  1 )  =  1 )
3230, 31oveq12d 5854 . . . . 5  |-  ( ph  ->  ( ( ( A  x.  A )  +  ( 2  x.  ( A  x.  1 ) ) )  +  ( 1  x.  1 ) )  =  ( ( ( A  x.  A
)  +  ( 2  x.  A ) )  +  1 ) )
3327, 32eqtrd 2197 . . . 4  |-  ( ph  ->  ( ( A  + 
1 )  x.  ( A  +  1 ) )  =  ( ( ( A  x.  A
)  +  ( 2  x.  A ) )  +  1 ) )
3433breq1d 3986 . . 3  |-  ( ph  ->  ( ( ( A  +  1 )  x.  ( A  +  1 ) )  <_  ( C  x.  C )  <->  ( ( ( A  x.  A )  +  ( 2  x.  A ) )  +  1 )  <_  ( C  x.  C ) ) )
3516, 34bitr4d 190 . 2  |-  ( ph  ->  ( ( ( A  x.  A )  +  ( 2  x.  A
) )  <  ( C  x.  C )  <->  ( ( A  +  1 )  x.  ( A  +  1 ) )  <_  ( C  x.  C ) ) )
366, 8, 353bitr4d 219 1  |-  ( ph  ->  ( A  <  C  <->  ( ( A  x.  A
)  +  ( 2  x.  A ) )  <  ( C  x.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1342    e. wcel 2135   class class class wbr 3976  (class class class)co 5836   CCcc 7742   1c1 7745    + caddc 7747    x. cmul 7749    < clt 7924    <_ cle 7925   2c2 8899   NN0cn0 9105   ^cexp 10444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-ilim 4341  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-frec 6350  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560  df-inn 8849  df-2 8907  df-n0 9106  df-z 9183  df-uz 9458  df-seqfrec 10371  df-exp 10445
This theorem is referenced by:  nn0opthlem2d  10623
  Copyright terms: Public domain W3C validator