ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0opthlem1d Unicode version

Theorem nn0opthlem1d 10812
Description: A rather pretty lemma for nn0opth2 10816. (Contributed by Jim Kingdon, 31-Oct-2021.)
Hypotheses
Ref Expression
nn0opthlem1d.1  |-  ( ph  ->  A  e.  NN0 )
nn0opthlem1d.2  |-  ( ph  ->  C  e.  NN0 )
Assertion
Ref Expression
nn0opthlem1d  |-  ( ph  ->  ( A  <  C  <->  ( ( A  x.  A
)  +  ( 2  x.  A ) )  <  ( C  x.  C ) ) )

Proof of Theorem nn0opthlem1d
StepHypRef Expression
1 nn0opthlem1d.1 . . . 4  |-  ( ph  ->  A  e.  NN0 )
2 1nn0 9265 . . . . 5  |-  1  e.  NN0
32a1i 9 . . . 4  |-  ( ph  ->  1  e.  NN0 )
41, 3nn0addcld 9306 . . 3  |-  ( ph  ->  ( A  +  1 )  e.  NN0 )
5 nn0opthlem1d.2 . . 3  |-  ( ph  ->  C  e.  NN0 )
64, 5nn0le2msqd 10811 . 2  |-  ( ph  ->  ( ( A  + 
1 )  <_  C  <->  ( ( A  +  1 )  x.  ( A  +  1 ) )  <_  ( C  x.  C ) ) )
7 nn0ltp1le 9388 . . 3  |-  ( ( A  e.  NN0  /\  C  e.  NN0 )  -> 
( A  <  C  <->  ( A  +  1 )  <_  C ) )
81, 5, 7syl2anc 411 . 2  |-  ( ph  ->  ( A  <  C  <->  ( A  +  1 )  <_  C ) )
91, 1nn0mulcld 9307 . . . . 5  |-  ( ph  ->  ( A  x.  A
)  e.  NN0 )
10 2nn0 9266 . . . . . . 7  |-  2  e.  NN0
1110a1i 9 . . . . . 6  |-  ( ph  ->  2  e.  NN0 )
1211, 1nn0mulcld 9307 . . . . 5  |-  ( ph  ->  ( 2  x.  A
)  e.  NN0 )
139, 12nn0addcld 9306 . . . 4  |-  ( ph  ->  ( ( A  x.  A )  +  ( 2  x.  A ) )  e.  NN0 )
145, 5nn0mulcld 9307 . . . 4  |-  ( ph  ->  ( C  x.  C
)  e.  NN0 )
15 nn0ltp1le 9388 . . . 4  |-  ( ( ( ( A  x.  A )  +  ( 2  x.  A ) )  e.  NN0  /\  ( C  x.  C
)  e.  NN0 )  ->  ( ( ( A  x.  A )  +  ( 2  x.  A
) )  <  ( C  x.  C )  <->  ( ( ( A  x.  A )  +  ( 2  x.  A ) )  +  1 )  <_  ( C  x.  C ) ) )
1613, 14, 15syl2anc 411 . . 3  |-  ( ph  ->  ( ( ( A  x.  A )  +  ( 2  x.  A
) )  <  ( C  x.  C )  <->  ( ( ( A  x.  A )  +  ( 2  x.  A ) )  +  1 )  <_  ( C  x.  C ) ) )
171nn0cnd 9304 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
18 1cnd 8042 . . . . . . 7  |-  ( ph  ->  1  e.  CC )
19 binom2 10743 . . . . . . 7  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( ( A  + 
1 ) ^ 2 )  =  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  1 ) ) )  +  ( 1 ^ 2 ) ) )
2017, 18, 19syl2anc 411 . . . . . 6  |-  ( ph  ->  ( ( A  + 
1 ) ^ 2 )  =  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  1 ) ) )  +  ( 1 ^ 2 ) ) )
2117, 18addcld 8046 . . . . . . 7  |-  ( ph  ->  ( A  +  1 )  e.  CC )
2221sqvald 10762 . . . . . 6  |-  ( ph  ->  ( ( A  + 
1 ) ^ 2 )  =  ( ( A  +  1 )  x.  ( A  + 
1 ) ) )
2317sqvald 10762 . . . . . . . 8  |-  ( ph  ->  ( A ^ 2 )  =  ( A  x.  A ) )
2423oveq1d 5937 . . . . . . 7  |-  ( ph  ->  ( ( A ^
2 )  +  ( 2  x.  ( A  x.  1 ) ) )  =  ( ( A  x.  A )  +  ( 2  x.  ( A  x.  1 ) ) ) )
2518sqvald 10762 . . . . . . 7  |-  ( ph  ->  ( 1 ^ 2 )  =  ( 1  x.  1 ) )
2624, 25oveq12d 5940 . . . . . 6  |-  ( ph  ->  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  1 ) ) )  +  ( 1 ^ 2 ) )  =  ( ( ( A  x.  A
)  +  ( 2  x.  ( A  x.  1 ) ) )  +  ( 1  x.  1 ) ) )
2720, 22, 263eqtr3d 2237 . . . . 5  |-  ( ph  ->  ( ( A  + 
1 )  x.  ( A  +  1 ) )  =  ( ( ( A  x.  A
)  +  ( 2  x.  ( A  x.  1 ) ) )  +  ( 1  x.  1 ) ) )
2817mulridd 8043 . . . . . . . 8  |-  ( ph  ->  ( A  x.  1 )  =  A )
2928oveq2d 5938 . . . . . . 7  |-  ( ph  ->  ( 2  x.  ( A  x.  1 ) )  =  ( 2  x.  A ) )
3029oveq2d 5938 . . . . . 6  |-  ( ph  ->  ( ( A  x.  A )  +  ( 2  x.  ( A  x.  1 ) ) )  =  ( ( A  x.  A )  +  ( 2  x.  A ) ) )
3118mulridd 8043 . . . . . 6  |-  ( ph  ->  ( 1  x.  1 )  =  1 )
3230, 31oveq12d 5940 . . . . 5  |-  ( ph  ->  ( ( ( A  x.  A )  +  ( 2  x.  ( A  x.  1 ) ) )  +  ( 1  x.  1 ) )  =  ( ( ( A  x.  A
)  +  ( 2  x.  A ) )  +  1 ) )
3327, 32eqtrd 2229 . . . 4  |-  ( ph  ->  ( ( A  + 
1 )  x.  ( A  +  1 ) )  =  ( ( ( A  x.  A
)  +  ( 2  x.  A ) )  +  1 ) )
3433breq1d 4043 . . 3  |-  ( ph  ->  ( ( ( A  +  1 )  x.  ( A  +  1 ) )  <_  ( C  x.  C )  <->  ( ( ( A  x.  A )  +  ( 2  x.  A ) )  +  1 )  <_  ( C  x.  C ) ) )
3516, 34bitr4d 191 . 2  |-  ( ph  ->  ( ( ( A  x.  A )  +  ( 2  x.  A
) )  <  ( C  x.  C )  <->  ( ( A  +  1 )  x.  ( A  +  1 ) )  <_  ( C  x.  C ) ) )
366, 8, 353bitr4d 220 1  |-  ( ph  ->  ( A  <  C  <->  ( ( A  x.  A
)  +  ( 2  x.  A ) )  <  ( C  x.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2167   class class class wbr 4033  (class class class)co 5922   CCcc 7877   1c1 7880    + caddc 7882    x. cmul 7884    < clt 8061    <_ cle 8062   2c2 9041   NN0cn0 9249   ^cexp 10630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602  df-seqfrec 10540  df-exp 10631
This theorem is referenced by:  nn0opthlem2d  10813
  Copyright terms: Public domain W3C validator