ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0opthlem1d Unicode version

Theorem nn0opthlem1d 10666
Description: A rather pretty lemma for nn0opth2 10670. (Contributed by Jim Kingdon, 31-Oct-2021.)
Hypotheses
Ref Expression
nn0opthlem1d.1  |-  ( ph  ->  A  e.  NN0 )
nn0opthlem1d.2  |-  ( ph  ->  C  e.  NN0 )
Assertion
Ref Expression
nn0opthlem1d  |-  ( ph  ->  ( A  <  C  <->  ( ( A  x.  A
)  +  ( 2  x.  A ) )  <  ( C  x.  C ) ) )

Proof of Theorem nn0opthlem1d
StepHypRef Expression
1 nn0opthlem1d.1 . . . 4  |-  ( ph  ->  A  e.  NN0 )
2 1nn0 9163 . . . . 5  |-  1  e.  NN0
32a1i 9 . . . 4  |-  ( ph  ->  1  e.  NN0 )
41, 3nn0addcld 9204 . . 3  |-  ( ph  ->  ( A  +  1 )  e.  NN0 )
5 nn0opthlem1d.2 . . 3  |-  ( ph  ->  C  e.  NN0 )
64, 5nn0le2msqd 10665 . 2  |-  ( ph  ->  ( ( A  + 
1 )  <_  C  <->  ( ( A  +  1 )  x.  ( A  +  1 ) )  <_  ( C  x.  C ) ) )
7 nn0ltp1le 9286 . . 3  |-  ( ( A  e.  NN0  /\  C  e.  NN0 )  -> 
( A  <  C  <->  ( A  +  1 )  <_  C ) )
81, 5, 7syl2anc 411 . 2  |-  ( ph  ->  ( A  <  C  <->  ( A  +  1 )  <_  C ) )
91, 1nn0mulcld 9205 . . . . 5  |-  ( ph  ->  ( A  x.  A
)  e.  NN0 )
10 2nn0 9164 . . . . . . 7  |-  2  e.  NN0
1110a1i 9 . . . . . 6  |-  ( ph  ->  2  e.  NN0 )
1211, 1nn0mulcld 9205 . . . . 5  |-  ( ph  ->  ( 2  x.  A
)  e.  NN0 )
139, 12nn0addcld 9204 . . . 4  |-  ( ph  ->  ( ( A  x.  A )  +  ( 2  x.  A ) )  e.  NN0 )
145, 5nn0mulcld 9205 . . . 4  |-  ( ph  ->  ( C  x.  C
)  e.  NN0 )
15 nn0ltp1le 9286 . . . 4  |-  ( ( ( ( A  x.  A )  +  ( 2  x.  A ) )  e.  NN0  /\  ( C  x.  C
)  e.  NN0 )  ->  ( ( ( A  x.  A )  +  ( 2  x.  A
) )  <  ( C  x.  C )  <->  ( ( ( A  x.  A )  +  ( 2  x.  A ) )  +  1 )  <_  ( C  x.  C ) ) )
1613, 14, 15syl2anc 411 . . 3  |-  ( ph  ->  ( ( ( A  x.  A )  +  ( 2  x.  A
) )  <  ( C  x.  C )  <->  ( ( ( A  x.  A )  +  ( 2  x.  A ) )  +  1 )  <_  ( C  x.  C ) ) )
171nn0cnd 9202 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
18 1cnd 7948 . . . . . . 7  |-  ( ph  ->  1  e.  CC )
19 binom2 10599 . . . . . . 7  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( ( A  + 
1 ) ^ 2 )  =  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  1 ) ) )  +  ( 1 ^ 2 ) ) )
2017, 18, 19syl2anc 411 . . . . . 6  |-  ( ph  ->  ( ( A  + 
1 ) ^ 2 )  =  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  1 ) ) )  +  ( 1 ^ 2 ) ) )
2117, 18addcld 7951 . . . . . . 7  |-  ( ph  ->  ( A  +  1 )  e.  CC )
2221sqvald 10618 . . . . . 6  |-  ( ph  ->  ( ( A  + 
1 ) ^ 2 )  =  ( ( A  +  1 )  x.  ( A  + 
1 ) ) )
2317sqvald 10618 . . . . . . . 8  |-  ( ph  ->  ( A ^ 2 )  =  ( A  x.  A ) )
2423oveq1d 5880 . . . . . . 7  |-  ( ph  ->  ( ( A ^
2 )  +  ( 2  x.  ( A  x.  1 ) ) )  =  ( ( A  x.  A )  +  ( 2  x.  ( A  x.  1 ) ) ) )
2518sqvald 10618 . . . . . . 7  |-  ( ph  ->  ( 1 ^ 2 )  =  ( 1  x.  1 ) )
2624, 25oveq12d 5883 . . . . . 6  |-  ( ph  ->  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  1 ) ) )  +  ( 1 ^ 2 ) )  =  ( ( ( A  x.  A
)  +  ( 2  x.  ( A  x.  1 ) ) )  +  ( 1  x.  1 ) ) )
2720, 22, 263eqtr3d 2216 . . . . 5  |-  ( ph  ->  ( ( A  + 
1 )  x.  ( A  +  1 ) )  =  ( ( ( A  x.  A
)  +  ( 2  x.  ( A  x.  1 ) ) )  +  ( 1  x.  1 ) ) )
2817mulid1d 7949 . . . . . . . 8  |-  ( ph  ->  ( A  x.  1 )  =  A )
2928oveq2d 5881 . . . . . . 7  |-  ( ph  ->  ( 2  x.  ( A  x.  1 ) )  =  ( 2  x.  A ) )
3029oveq2d 5881 . . . . . 6  |-  ( ph  ->  ( ( A  x.  A )  +  ( 2  x.  ( A  x.  1 ) ) )  =  ( ( A  x.  A )  +  ( 2  x.  A ) ) )
3118mulid1d 7949 . . . . . 6  |-  ( ph  ->  ( 1  x.  1 )  =  1 )
3230, 31oveq12d 5883 . . . . 5  |-  ( ph  ->  ( ( ( A  x.  A )  +  ( 2  x.  ( A  x.  1 ) ) )  +  ( 1  x.  1 ) )  =  ( ( ( A  x.  A
)  +  ( 2  x.  A ) )  +  1 ) )
3327, 32eqtrd 2208 . . . 4  |-  ( ph  ->  ( ( A  + 
1 )  x.  ( A  +  1 ) )  =  ( ( ( A  x.  A
)  +  ( 2  x.  A ) )  +  1 ) )
3433breq1d 4008 . . 3  |-  ( ph  ->  ( ( ( A  +  1 )  x.  ( A  +  1 ) )  <_  ( C  x.  C )  <->  ( ( ( A  x.  A )  +  ( 2  x.  A ) )  +  1 )  <_  ( C  x.  C ) ) )
3516, 34bitr4d 191 . 2  |-  ( ph  ->  ( ( ( A  x.  A )  +  ( 2  x.  A
) )  <  ( C  x.  C )  <->  ( ( A  +  1 )  x.  ( A  +  1 ) )  <_  ( C  x.  C ) ) )
366, 8, 353bitr4d 220 1  |-  ( ph  ->  ( A  <  C  <->  ( ( A  x.  A
)  +  ( 2  x.  A ) )  <  ( C  x.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1353    e. wcel 2146   class class class wbr 3998  (class class class)co 5865   CCcc 7784   1c1 7787    + caddc 7789    x. cmul 7791    < clt 7966    <_ cle 7967   2c2 8941   NN0cn0 9147   ^cexp 10487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-frec 6382  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8602  df-inn 8891  df-2 8949  df-n0 9148  df-z 9225  df-uz 9500  df-seqfrec 10414  df-exp 10488
This theorem is referenced by:  nn0opthlem2d  10667
  Copyright terms: Public domain W3C validator