| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0addcld | GIF version | ||
| Description: Closure of addition of nonnegative integers, inference form. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| nn0red.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
| nn0addcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| nn0addcld | ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0red.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ0) | |
| 2 | nn0addcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℕ0) | |
| 3 | nn0addcl 9330 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 + 𝐵) ∈ ℕ0) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℕ0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2176 (class class class)co 5944 + caddc 7928 ℕ0cn0 9295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4162 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-i2m1 8030 ax-0id 8033 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 df-inn 9037 df-n0 9296 |
| This theorem is referenced by: modsumfzodifsn 10541 expaddzap 10728 nn0opthlem1d 10865 nn0opthlem2d 10866 nn0opthd 10867 nn0opth2d 10868 bccl 10912 ccatfvalfi 11048 ccatcl 11049 swrdccat2 11124 mertenslemi1 11846 bitsmod 12267 bitsinv1lem 12272 pcpremul 12616 gzabssqcl 12704 4sqlem2 12712 mul4sq 12717 4sqlemsdc 12723 4sqlem12 12725 4sqlem14 12727 4sqlem16 12729 mplsubgfilemcl 14461 plymullem 15222 lgseisenlem2 15548 2sqlem8 15600 |
| Copyright terms: Public domain | W3C validator |