ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0addcld GIF version

Theorem nn0addcld 9297
Description: Closure of addition of nonnegative integers, inference form. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
nn0red.1 (𝜑𝐴 ∈ ℕ0)
nn0addcld.2 (𝜑𝐵 ∈ ℕ0)
Assertion
Ref Expression
nn0addcld (𝜑 → (𝐴 + 𝐵) ∈ ℕ0)

Proof of Theorem nn0addcld
StepHypRef Expression
1 nn0red.1 . 2 (𝜑𝐴 ∈ ℕ0)
2 nn0addcld.2 . 2 (𝜑𝐵 ∈ ℕ0)
3 nn0addcl 9275 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 + 𝐵) ∈ ℕ0)
41, 2, 3syl2anc 411 1 (𝜑 → (𝐴 + 𝐵) ∈ ℕ0)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2164  (class class class)co 5918   + caddc 7875  0cn0 9240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-sep 4147  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0id 7980
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-iota 5215  df-fv 5262  df-ov 5921  df-inn 8983  df-n0 9241
This theorem is referenced by:  modsumfzodifsn  10467  expaddzap  10654  nn0opthlem1d  10791  nn0opthlem2d  10792  nn0opthd  10793  nn0opth2d  10794  bccl  10838  mertenslemi1  11678  pcpremul  12431  gzabssqcl  12519  4sqlem2  12527  mul4sq  12532  4sqlemsdc  12538  4sqlem12  12540  4sqlem14  12542  4sqlem16  12544  plymullem  14896  lgseisenlem2  15187  2sqlem8  15210
  Copyright terms: Public domain W3C validator