ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0addcld GIF version

Theorem nn0addcld 9352
Description: Closure of addition of nonnegative integers, inference form. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
nn0red.1 (𝜑𝐴 ∈ ℕ0)
nn0addcld.2 (𝜑𝐵 ∈ ℕ0)
Assertion
Ref Expression
nn0addcld (𝜑 → (𝐴 + 𝐵) ∈ ℕ0)

Proof of Theorem nn0addcld
StepHypRef Expression
1 nn0red.1 . 2 (𝜑𝐴 ∈ ℕ0)
2 nn0addcld.2 . 2 (𝜑𝐵 ∈ ℕ0)
3 nn0addcl 9330 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 + 𝐵) ∈ ℕ0)
41, 2, 3syl2anc 411 1 (𝜑 → (𝐴 + 𝐵) ∈ ℕ0)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2176  (class class class)co 5944   + caddc 7928  0cn0 9295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-sep 4162  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0id 8033
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-iota 5232  df-fv 5279  df-ov 5947  df-inn 9037  df-n0 9296
This theorem is referenced by:  modsumfzodifsn  10541  expaddzap  10728  nn0opthlem1d  10865  nn0opthlem2d  10866  nn0opthd  10867  nn0opth2d  10868  bccl  10912  ccatfvalfi  11048  ccatcl  11049  swrdccat2  11124  mertenslemi1  11846  bitsmod  12267  bitsinv1lem  12272  pcpremul  12616  gzabssqcl  12704  4sqlem2  12712  mul4sq  12717  4sqlemsdc  12723  4sqlem12  12725  4sqlem14  12727  4sqlem16  12729  mplsubgfilemcl  14461  plymullem  15222  lgseisenlem2  15548  2sqlem8  15600
  Copyright terms: Public domain W3C validator