| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0addcld | GIF version | ||
| Description: Closure of addition of nonnegative integers, inference form. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| nn0red.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
| nn0addcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| nn0addcld | ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0red.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ0) | |
| 2 | nn0addcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℕ0) | |
| 3 | nn0addcl 9365 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 + 𝐵) ∈ ℕ0) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℕ0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2178 (class class class)co 5967 + caddc 7963 ℕ0cn0 9330 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-sep 4178 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-i2m1 8065 ax-0id 8068 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 df-inn 9072 df-n0 9331 |
| This theorem is referenced by: modsumfzodifsn 10578 expaddzap 10765 nn0opthlem1d 10902 nn0opthlem2d 10903 nn0opthd 10904 nn0opth2d 10905 bccl 10949 ccatfvalfi 11086 ccatcl 11087 swrdccat2 11162 mertenslemi1 11961 bitsmod 12382 bitsinv1lem 12387 pcpremul 12731 gzabssqcl 12819 4sqlem2 12827 mul4sq 12832 4sqlemsdc 12838 4sqlem12 12840 4sqlem14 12842 4sqlem16 12844 mplsubgfilemcl 14576 plymullem 15337 lgseisenlem2 15663 2sqlem8 15715 |
| Copyright terms: Public domain | W3C validator |