![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0addcld | GIF version |
Description: Closure of addition of nonnegative integers, inference form. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nn0red.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
nn0addcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℕ0) |
Ref | Expression |
---|---|
nn0addcld | ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0red.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ0) | |
2 | nn0addcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℕ0) | |
3 | nn0addcl 9241 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 + 𝐵) ∈ ℕ0) | |
4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℕ0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2160 (class class class)co 5896 + caddc 7844 ℕ0cn0 9206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 ax-sep 4136 ax-cnex 7932 ax-resscn 7933 ax-1cn 7934 ax-1re 7935 ax-icn 7936 ax-addcl 7937 ax-addrcl 7938 ax-mulcl 7939 ax-addcom 7941 ax-addass 7943 ax-i2m1 7946 ax-0id 7949 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-iota 5196 df-fv 5243 df-ov 5899 df-inn 8950 df-n0 9207 |
This theorem is referenced by: modsumfzodifsn 10427 expaddzap 10595 nn0opthlem1d 10732 nn0opthlem2d 10733 nn0opthd 10734 nn0opth2d 10735 bccl 10779 mertenslemi1 11575 pcpremul 12325 gzabssqcl 12413 4sqlem2 12421 mul4sq 12426 4sqlemsdc 12432 4sqlem12 12434 4sqlem14 12436 4sqlem16 12438 lgseisenlem2 14912 2sqlem8 14931 |
Copyright terms: Public domain | W3C validator |