ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nsgbi Unicode version

Theorem nsgbi 13095
Description: Defining property of a normal subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
isnsg.1  |-  X  =  ( Base `  G
)
isnsg.2  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
nsgbi  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  A  e.  X  /\  B  e.  X
)  ->  ( ( A  .+  B )  e.  S  <->  ( B  .+  A )  e.  S
) )

Proof of Theorem nsgbi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isnsg.1 . . . . 5  |-  X  =  ( Base `  G
)
2 isnsg.2 . . . . 5  |-  .+  =  ( +g  `  G )
31, 2isnsg 13093 . . . 4  |-  ( S  e.  (NrmSGrp `  G
)  <->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) ) )
43simprbi 275 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  A. x  e.  X  A. y  e.  X  ( (
x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S
) )
5 oveq1 5895 . . . . . 6  |-  ( x  =  A  ->  (
x  .+  y )  =  ( A  .+  y ) )
65eleq1d 2256 . . . . 5  |-  ( x  =  A  ->  (
( x  .+  y
)  e.  S  <->  ( A  .+  y )  e.  S
) )
7 oveq2 5896 . . . . . 6  |-  ( x  =  A  ->  (
y  .+  x )  =  ( y  .+  A ) )
87eleq1d 2256 . . . . 5  |-  ( x  =  A  ->  (
( y  .+  x
)  e.  S  <->  ( y  .+  A )  e.  S
) )
96, 8bibi12d 235 . . . 4  |-  ( x  =  A  ->  (
( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S )  <->  ( ( A  .+  y )  e.  S  <->  ( y  .+  A )  e.  S
) ) )
10 oveq2 5896 . . . . . 6  |-  ( y  =  B  ->  ( A  .+  y )  =  ( A  .+  B
) )
1110eleq1d 2256 . . . . 5  |-  ( y  =  B  ->  (
( A  .+  y
)  e.  S  <->  ( A  .+  B )  e.  S
) )
12 oveq1 5895 . . . . . 6  |-  ( y  =  B  ->  (
y  .+  A )  =  ( B  .+  A ) )
1312eleq1d 2256 . . . . 5  |-  ( y  =  B  ->  (
( y  .+  A
)  e.  S  <->  ( B  .+  A )  e.  S
) )
1411, 13bibi12d 235 . . . 4  |-  ( y  =  B  ->  (
( ( A  .+  y )  e.  S  <->  ( y  .+  A )  e.  S )  <->  ( ( A  .+  B )  e.  S  <->  ( B  .+  A )  e.  S
) ) )
159, 14rspc2v 2866 . . 3  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( A. x  e.  X  A. y  e.  X  ( ( x 
.+  y )  e.  S  <->  ( y  .+  x )  e.  S
)  ->  ( ( A  .+  B )  e.  S  <->  ( B  .+  A )  e.  S
) ) )
164, 15syl5com 29 . 2  |-  ( S  e.  (NrmSGrp `  G
)  ->  ( ( A  e.  X  /\  B  e.  X )  ->  ( ( A  .+  B )  e.  S  <->  ( B  .+  A )  e.  S ) ) )
17163impib 1202 1  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  A  e.  X  /\  B  e.  X
)  ->  ( ( A  .+  B )  e.  S  <->  ( B  .+  A )  e.  S
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 979    = wceq 1363    e. wcel 2158   A.wral 2465   ` cfv 5228  (class class class)co 5888   Basecbs 12475   +g cplusg 12550  SubGrpcsubg 13058  NrmSGrpcnsg 13059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-cnex 7915  ax-resscn 7916  ax-1re 7918  ax-addrcl 7921
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-fv 5236  df-ov 5891  df-inn 8933  df-2 8991  df-ndx 12478  df-slot 12479  df-base 12481  df-plusg 12563  df-subg 13061  df-nsg 13062
This theorem is referenced by:  nsgconj  13097  eqgcpbl  13119
  Copyright terms: Public domain W3C validator