ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nsgbi Unicode version

Theorem nsgbi 13736
Description: Defining property of a normal subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
isnsg.1  |-  X  =  ( Base `  G
)
isnsg.2  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
nsgbi  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  A  e.  X  /\  B  e.  X
)  ->  ( ( A  .+  B )  e.  S  <->  ( B  .+  A )  e.  S
) )

Proof of Theorem nsgbi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isnsg.1 . . . . 5  |-  X  =  ( Base `  G
)
2 isnsg.2 . . . . 5  |-  .+  =  ( +g  `  G )
31, 2isnsg 13734 . . . 4  |-  ( S  e.  (NrmSGrp `  G
)  <->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) ) )
43simprbi 275 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  A. x  e.  X  A. y  e.  X  ( (
x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S
) )
5 oveq1 6007 . . . . . 6  |-  ( x  =  A  ->  (
x  .+  y )  =  ( A  .+  y ) )
65eleq1d 2298 . . . . 5  |-  ( x  =  A  ->  (
( x  .+  y
)  e.  S  <->  ( A  .+  y )  e.  S
) )
7 oveq2 6008 . . . . . 6  |-  ( x  =  A  ->  (
y  .+  x )  =  ( y  .+  A ) )
87eleq1d 2298 . . . . 5  |-  ( x  =  A  ->  (
( y  .+  x
)  e.  S  <->  ( y  .+  A )  e.  S
) )
96, 8bibi12d 235 . . . 4  |-  ( x  =  A  ->  (
( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S )  <->  ( ( A  .+  y )  e.  S  <->  ( y  .+  A )  e.  S
) ) )
10 oveq2 6008 . . . . . 6  |-  ( y  =  B  ->  ( A  .+  y )  =  ( A  .+  B
) )
1110eleq1d 2298 . . . . 5  |-  ( y  =  B  ->  (
( A  .+  y
)  e.  S  <->  ( A  .+  B )  e.  S
) )
12 oveq1 6007 . . . . . 6  |-  ( y  =  B  ->  (
y  .+  A )  =  ( B  .+  A ) )
1312eleq1d 2298 . . . . 5  |-  ( y  =  B  ->  (
( y  .+  A
)  e.  S  <->  ( B  .+  A )  e.  S
) )
1411, 13bibi12d 235 . . . 4  |-  ( y  =  B  ->  (
( ( A  .+  y )  e.  S  <->  ( y  .+  A )  e.  S )  <->  ( ( A  .+  B )  e.  S  <->  ( B  .+  A )  e.  S
) ) )
159, 14rspc2v 2920 . . 3  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( A. x  e.  X  A. y  e.  X  ( ( x 
.+  y )  e.  S  <->  ( y  .+  x )  e.  S
)  ->  ( ( A  .+  B )  e.  S  <->  ( B  .+  A )  e.  S
) ) )
164, 15syl5com 29 . 2  |-  ( S  e.  (NrmSGrp `  G
)  ->  ( ( A  e.  X  /\  B  e.  X )  ->  ( ( A  .+  B )  e.  S  <->  ( B  .+  A )  e.  S ) ) )
17163impib 1225 1  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  A  e.  X  /\  B  e.  X
)  ->  ( ( A  .+  B )  e.  S  <->  ( B  .+  A )  e.  S
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508   ` cfv 5317  (class class class)co 6000   Basecbs 13027   +g cplusg 13105  SubGrpcsubg 13699  NrmSGrpcnsg 13700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-ov 6003  df-inn 9107  df-2 9165  df-ndx 13030  df-slot 13031  df-base 13033  df-plusg 13118  df-subg 13702  df-nsg 13703
This theorem is referenced by:  nsgconj  13738  eqgcpbl  13760
  Copyright terms: Public domain W3C validator