ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nsgbi GIF version

Theorem nsgbi 13727
Description: Defining property of a normal subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
isnsg.1 𝑋 = (Base‘𝐺)
isnsg.2 + = (+g𝐺)
Assertion
Ref Expression
nsgbi ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆))

Proof of Theorem nsgbi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isnsg.1 . . . . 5 𝑋 = (Base‘𝐺)
2 isnsg.2 . . . . 5 + = (+g𝐺)
31, 2isnsg 13725 . . . 4 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)))
43simprbi 275 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆))
5 oveq1 6001 . . . . . 6 (𝑥 = 𝐴 → (𝑥 + 𝑦) = (𝐴 + 𝑦))
65eleq1d 2298 . . . . 5 (𝑥 = 𝐴 → ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝐴 + 𝑦) ∈ 𝑆))
7 oveq2 6002 . . . . . 6 (𝑥 = 𝐴 → (𝑦 + 𝑥) = (𝑦 + 𝐴))
87eleq1d 2298 . . . . 5 (𝑥 = 𝐴 → ((𝑦 + 𝑥) ∈ 𝑆 ↔ (𝑦 + 𝐴) ∈ 𝑆))
96, 8bibi12d 235 . . . 4 (𝑥 = 𝐴 → (((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆) ↔ ((𝐴 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝐴) ∈ 𝑆)))
10 oveq2 6002 . . . . . 6 (𝑦 = 𝐵 → (𝐴 + 𝑦) = (𝐴 + 𝐵))
1110eleq1d 2298 . . . . 5 (𝑦 = 𝐵 → ((𝐴 + 𝑦) ∈ 𝑆 ↔ (𝐴 + 𝐵) ∈ 𝑆))
12 oveq1 6001 . . . . . 6 (𝑦 = 𝐵 → (𝑦 + 𝐴) = (𝐵 + 𝐴))
1312eleq1d 2298 . . . . 5 (𝑦 = 𝐵 → ((𝑦 + 𝐴) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆))
1411, 13bibi12d 235 . . . 4 (𝑦 = 𝐵 → (((𝐴 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝐴) ∈ 𝑆) ↔ ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆)))
159, 14rspc2v 2920 . . 3 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆) → ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆)))
164, 15syl5com 29 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) → ((𝐴𝑋𝐵𝑋) → ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆)))
17163impib 1225 1 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  wral 2508  cfv 5314  (class class class)co 5994  Basecbs 13018  +gcplusg 13096  SubGrpcsubg 13690  NrmSGrpcnsg 13691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-cnex 8078  ax-resscn 8079  ax-1re 8081  ax-addrcl 8084
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-fv 5322  df-ov 5997  df-inn 9099  df-2 9157  df-ndx 13021  df-slot 13022  df-base 13024  df-plusg 13109  df-subg 13693  df-nsg 13694
This theorem is referenced by:  nsgconj  13729  eqgcpbl  13751
  Copyright terms: Public domain W3C validator