| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqgcpbl | Unicode version | ||
| Description: The subgroup coset equivalence relation is compatible with addition when the subgroup is normal. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| Ref | Expression |
|---|---|
| eqger.x |
|
| eqger.r |
|
| eqgcpbl.p |
|
| Ref | Expression |
|---|---|
| eqgcpbl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsgsubg 13656 |
. . . . . 6
| |
| 2 | 1 | adantr 276 |
. . . . 5
|
| 3 | subgrcl 13630 |
. . . . 5
| |
| 4 | 2, 3 | syl 14 |
. . . 4
|
| 5 | simprl 529 |
. . . . . 6
| |
| 6 | eqger.x |
. . . . . . . . 9
| |
| 7 | 6 | subgss 13625 |
. . . . . . . 8
|
| 8 | 2, 7 | syl 14 |
. . . . . . 7
|
| 9 | eqid 2207 |
. . . . . . . 8
| |
| 10 | eqgcpbl.p |
. . . . . . . 8
| |
| 11 | eqger.r |
. . . . . . . 8
| |
| 12 | 6, 9, 10, 11 | eqgval 13674 |
. . . . . . 7
|
| 13 | 4, 8, 12 | syl2anc 411 |
. . . . . 6
|
| 14 | 5, 13 | mpbid 147 |
. . . . 5
|
| 15 | 14 | simp1d 1012 |
. . . 4
|
| 16 | simprr 531 |
. . . . . 6
| |
| 17 | 6, 9, 10, 11 | eqgval 13674 |
. . . . . . 7
|
| 18 | 4, 8, 17 | syl2anc 411 |
. . . . . 6
|
| 19 | 16, 18 | mpbid 147 |
. . . . 5
|
| 20 | 19 | simp1d 1012 |
. . . 4
|
| 21 | 6, 10 | grpcl 13455 |
. . . 4
|
| 22 | 4, 15, 20, 21 | syl3anc 1250 |
. . 3
|
| 23 | 14 | simp2d 1013 |
. . . 4
|
| 24 | 19 | simp2d 1013 |
. . . 4
|
| 25 | 6, 10 | grpcl 13455 |
. . . 4
|
| 26 | 4, 23, 24, 25 | syl3anc 1250 |
. . 3
|
| 27 | 6, 10, 9 | grpinvadd 13525 |
. . . . . . 7
|
| 28 | 4, 15, 20, 27 | syl3anc 1250 |
. . . . . 6
|
| 29 | 28 | oveq1d 5982 |
. . . . 5
|
| 30 | 6, 9 | grpinvcl 13495 |
. . . . . . 7
|
| 31 | 4, 20, 30 | syl2anc 411 |
. . . . . 6
|
| 32 | 6, 9 | grpinvcl 13495 |
. . . . . . 7
|
| 33 | 4, 15, 32 | syl2anc 411 |
. . . . . 6
|
| 34 | 6, 10 | grpass 13456 |
. . . . . 6
|
| 35 | 4, 31, 33, 26, 34 | syl13anc 1252 |
. . . . 5
|
| 36 | 29, 35 | eqtrd 2240 |
. . . 4
|
| 37 | 6, 10 | grpass 13456 |
. . . . . . . . 9
|
| 38 | 4, 33, 23, 24, 37 | syl13anc 1252 |
. . . . . . . 8
|
| 39 | 38 | oveq1d 5982 |
. . . . . . 7
|
| 40 | 6, 10 | grpcl 13455 |
. . . . . . . . 9
|
| 41 | 4, 33, 23, 40 | syl3anc 1250 |
. . . . . . . 8
|
| 42 | 6, 10 | grpass 13456 |
. . . . . . . 8
|
| 43 | 4, 41, 24, 31, 42 | syl13anc 1252 |
. . . . . . 7
|
| 44 | 39, 43 | eqtr3d 2242 |
. . . . . 6
|
| 45 | 14 | simp3d 1014 |
. . . . . . 7
|
| 46 | 19 | simp3d 1014 |
. . . . . . . 8
|
| 47 | simpl 109 |
. . . . . . . . 9
| |
| 48 | 6, 10 | nsgbi 13655 |
. . . . . . . . 9
|
| 49 | 47, 31, 24, 48 | syl3anc 1250 |
. . . . . . . 8
|
| 50 | 46, 49 | mpbid 147 |
. . . . . . 7
|
| 51 | 10 | subgcl 13635 |
. . . . . . 7
|
| 52 | 2, 45, 50, 51 | syl3anc 1250 |
. . . . . 6
|
| 53 | 44, 52 | eqeltrd 2284 |
. . . . 5
|
| 54 | 6, 10 | grpcl 13455 |
. . . . . . 7
|
| 55 | 4, 33, 26, 54 | syl3anc 1250 |
. . . . . 6
|
| 56 | 6, 10 | nsgbi 13655 |
. . . . . 6
|
| 57 | 47, 55, 31, 56 | syl3anc 1250 |
. . . . 5
|
| 58 | 53, 57 | mpbid 147 |
. . . 4
|
| 59 | 36, 58 | eqeltrd 2284 |
. . 3
|
| 60 | 6, 9, 10, 11 | eqgval 13674 |
. . . 4
|
| 61 | 4, 8, 60 | syl2anc 411 |
. . 3
|
| 62 | 22, 26, 59, 61 | mpbir3and 1183 |
. 2
|
| 63 | 62 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-pre-ltirr 8072 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-ltxr 8147 df-inn 9072 df-2 9130 df-ndx 12950 df-slot 12951 df-base 12953 df-sets 12954 df-iress 12955 df-plusg 13037 df-0g 13205 df-mgm 13303 df-sgrp 13349 df-mnd 13364 df-grp 13450 df-minusg 13451 df-subg 13621 df-nsg 13622 df-eqg 13623 |
| This theorem is referenced by: qusgrp 13683 qusadd 13685 qus2idrng 14402 qus1 14403 |
| Copyright terms: Public domain | W3C validator |