| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqgcpbl | Unicode version | ||
| Description: The subgroup coset equivalence relation is compatible with addition when the subgroup is normal. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| Ref | Expression |
|---|---|
| eqger.x |
|
| eqger.r |
|
| eqgcpbl.p |
|
| Ref | Expression |
|---|---|
| eqgcpbl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsgsubg 13411 |
. . . . . 6
| |
| 2 | 1 | adantr 276 |
. . . . 5
|
| 3 | subgrcl 13385 |
. . . . 5
| |
| 4 | 2, 3 | syl 14 |
. . . 4
|
| 5 | simprl 529 |
. . . . . 6
| |
| 6 | eqger.x |
. . . . . . . . 9
| |
| 7 | 6 | subgss 13380 |
. . . . . . . 8
|
| 8 | 2, 7 | syl 14 |
. . . . . . 7
|
| 9 | eqid 2196 |
. . . . . . . 8
| |
| 10 | eqgcpbl.p |
. . . . . . . 8
| |
| 11 | eqger.r |
. . . . . . . 8
| |
| 12 | 6, 9, 10, 11 | eqgval 13429 |
. . . . . . 7
|
| 13 | 4, 8, 12 | syl2anc 411 |
. . . . . 6
|
| 14 | 5, 13 | mpbid 147 |
. . . . 5
|
| 15 | 14 | simp1d 1011 |
. . . 4
|
| 16 | simprr 531 |
. . . . . 6
| |
| 17 | 6, 9, 10, 11 | eqgval 13429 |
. . . . . . 7
|
| 18 | 4, 8, 17 | syl2anc 411 |
. . . . . 6
|
| 19 | 16, 18 | mpbid 147 |
. . . . 5
|
| 20 | 19 | simp1d 1011 |
. . . 4
|
| 21 | 6, 10 | grpcl 13210 |
. . . 4
|
| 22 | 4, 15, 20, 21 | syl3anc 1249 |
. . 3
|
| 23 | 14 | simp2d 1012 |
. . . 4
|
| 24 | 19 | simp2d 1012 |
. . . 4
|
| 25 | 6, 10 | grpcl 13210 |
. . . 4
|
| 26 | 4, 23, 24, 25 | syl3anc 1249 |
. . 3
|
| 27 | 6, 10, 9 | grpinvadd 13280 |
. . . . . . 7
|
| 28 | 4, 15, 20, 27 | syl3anc 1249 |
. . . . . 6
|
| 29 | 28 | oveq1d 5940 |
. . . . 5
|
| 30 | 6, 9 | grpinvcl 13250 |
. . . . . . 7
|
| 31 | 4, 20, 30 | syl2anc 411 |
. . . . . 6
|
| 32 | 6, 9 | grpinvcl 13250 |
. . . . . . 7
|
| 33 | 4, 15, 32 | syl2anc 411 |
. . . . . 6
|
| 34 | 6, 10 | grpass 13211 |
. . . . . 6
|
| 35 | 4, 31, 33, 26, 34 | syl13anc 1251 |
. . . . 5
|
| 36 | 29, 35 | eqtrd 2229 |
. . . 4
|
| 37 | 6, 10 | grpass 13211 |
. . . . . . . . 9
|
| 38 | 4, 33, 23, 24, 37 | syl13anc 1251 |
. . . . . . . 8
|
| 39 | 38 | oveq1d 5940 |
. . . . . . 7
|
| 40 | 6, 10 | grpcl 13210 |
. . . . . . . . 9
|
| 41 | 4, 33, 23, 40 | syl3anc 1249 |
. . . . . . . 8
|
| 42 | 6, 10 | grpass 13211 |
. . . . . . . 8
|
| 43 | 4, 41, 24, 31, 42 | syl13anc 1251 |
. . . . . . 7
|
| 44 | 39, 43 | eqtr3d 2231 |
. . . . . 6
|
| 45 | 14 | simp3d 1013 |
. . . . . . 7
|
| 46 | 19 | simp3d 1013 |
. . . . . . . 8
|
| 47 | simpl 109 |
. . . . . . . . 9
| |
| 48 | 6, 10 | nsgbi 13410 |
. . . . . . . . 9
|
| 49 | 47, 31, 24, 48 | syl3anc 1249 |
. . . . . . . 8
|
| 50 | 46, 49 | mpbid 147 |
. . . . . . 7
|
| 51 | 10 | subgcl 13390 |
. . . . . . 7
|
| 52 | 2, 45, 50, 51 | syl3anc 1249 |
. . . . . 6
|
| 53 | 44, 52 | eqeltrd 2273 |
. . . . 5
|
| 54 | 6, 10 | grpcl 13210 |
. . . . . . 7
|
| 55 | 4, 33, 26, 54 | syl3anc 1249 |
. . . . . 6
|
| 56 | 6, 10 | nsgbi 13410 |
. . . . . 6
|
| 57 | 47, 55, 31, 56 | syl3anc 1249 |
. . . . 5
|
| 58 | 53, 57 | mpbid 147 |
. . . 4
|
| 59 | 36, 58 | eqeltrd 2273 |
. . 3
|
| 60 | 6, 9, 10, 11 | eqgval 13429 |
. . . 4
|
| 61 | 4, 8, 60 | syl2anc 411 |
. . 3
|
| 62 | 22, 26, 59, 61 | mpbir3and 1182 |
. 2
|
| 63 | 62 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-ltirr 8008 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-inn 9008 df-2 9066 df-ndx 12706 df-slot 12707 df-base 12709 df-sets 12710 df-iress 12711 df-plusg 12793 df-0g 12960 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-grp 13205 df-minusg 13206 df-subg 13376 df-nsg 13377 df-eqg 13378 |
| This theorem is referenced by: qusgrp 13438 qusadd 13440 qus2idrng 14157 qus1 14158 |
| Copyright terms: Public domain | W3C validator |