ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nsgconj Unicode version

Theorem nsgconj 13346
Description: The conjugation of an element of a normal subgroup is in the subgroup. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypotheses
Ref Expression
isnsg3.1  |-  X  =  ( Base `  G
)
isnsg3.2  |-  .+  =  ( +g  `  G )
isnsg3.3  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
nsgconj  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  A  e.  X  /\  B  e.  S
)  ->  ( ( A  .+  B )  .-  A )  e.  S
)

Proof of Theorem nsgconj
StepHypRef Expression
1 nsgsubg 13345 . . . . 5  |-  ( S  e.  (NrmSGrp `  G
)  ->  S  e.  (SubGrp `  G ) )
213ad2ant1 1020 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  A  e.  X  /\  B  e.  S
)  ->  S  e.  (SubGrp `  G ) )
3 subgrcl 13319 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
42, 3syl 14 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  A  e.  X  /\  B  e.  S
)  ->  G  e.  Grp )
5 simp2 1000 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  A  e.  X  /\  B  e.  S
)  ->  A  e.  X )
6 isnsg3.1 . . . . . 6  |-  X  =  ( Base `  G
)
76subgss 13314 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  X
)
82, 7syl 14 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  A  e.  X  /\  B  e.  S
)  ->  S  C_  X
)
9 simp3 1001 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  A  e.  X  /\  B  e.  S
)  ->  B  e.  S )
108, 9sseldd 3185 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  A  e.  X  /\  B  e.  S
)  ->  B  e.  X )
11 isnsg3.2 . . . 4  |-  .+  =  ( +g  `  G )
12 isnsg3.3 . . . 4  |-  .-  =  ( -g `  G )
136, 11, 12grpaddsubass 13232 . . 3  |-  ( ( G  e.  Grp  /\  ( A  e.  X  /\  B  e.  X  /\  A  e.  X
) )  ->  (
( A  .+  B
)  .-  A )  =  ( A  .+  ( B  .-  A ) ) )
144, 5, 10, 5, 13syl13anc 1251 . 2  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  A  e.  X  /\  B  e.  S
)  ->  ( ( A  .+  B )  .-  A )  =  ( A  .+  ( B 
.-  A ) ) )
156, 11, 12grpnpcan 13234 . . . . 5  |-  ( ( G  e.  Grp  /\  B  e.  X  /\  A  e.  X )  ->  ( ( B  .-  A )  .+  A
)  =  B )
164, 10, 5, 15syl3anc 1249 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  A  e.  X  /\  B  e.  S
)  ->  ( ( B  .-  A )  .+  A )  =  B )
1716, 9eqeltrd 2273 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  A  e.  X  /\  B  e.  S
)  ->  ( ( B  .-  A )  .+  A )  e.  S
)
18 simp1 999 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  A  e.  X  /\  B  e.  S
)  ->  S  e.  (NrmSGrp `  G ) )
196, 12grpsubcl 13222 . . . . 5  |-  ( ( G  e.  Grp  /\  B  e.  X  /\  A  e.  X )  ->  ( B  .-  A
)  e.  X )
204, 10, 5, 19syl3anc 1249 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  A  e.  X  /\  B  e.  S
)  ->  ( B  .-  A )  e.  X
)
216, 11nsgbi 13344 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( B  .-  A )  e.  X  /\  A  e.  X
)  ->  ( (
( B  .-  A
)  .+  A )  e.  S  <->  ( A  .+  ( B  .-  A ) )  e.  S ) )
2218, 20, 5, 21syl3anc 1249 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  A  e.  X  /\  B  e.  S
)  ->  ( (
( B  .-  A
)  .+  A )  e.  S  <->  ( A  .+  ( B  .-  A ) )  e.  S ) )
2317, 22mpbid 147 . 2  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  A  e.  X  /\  B  e.  S
)  ->  ( A  .+  ( B  .-  A
) )  e.  S
)
2414, 23eqeltrd 2273 1  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  A  e.  X  /\  B  e.  S
)  ->  ( ( A  .+  B )  .-  A )  e.  S
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167    C_ wss 3157   ` cfv 5259  (class class class)co 5923   Basecbs 12688   +g cplusg 12765   Grpcgrp 13142   -gcsg 13144  SubGrpcsubg 13307  NrmSGrpcnsg 13308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7972  ax-resscn 7973  ax-1re 7975  ax-addrcl 7978
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6199  df-2nd 6200  df-inn 8993  df-2 9051  df-ndx 12691  df-slot 12692  df-base 12694  df-plusg 12778  df-0g 12939  df-mgm 13009  df-sgrp 13055  df-mnd 13068  df-grp 13145  df-minusg 13146  df-sbg 13147  df-subg 13310  df-nsg 13311
This theorem is referenced by:  isnsg3  13347  ghmnsgima  13408  ghmnsgpreima  13409
  Copyright terms: Public domain W3C validator