ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordvdsmul Unicode version

Theorem ordvdsmul 11111
Description: If an integer divides either of two others, it divides their product. (Contributed by Paul Chapman, 17-Nov-2012.) (Proof shortened by Mario Carneiro, 17-Jul-2014.)
Assertion
Ref Expression
ordvdsmul  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  ||  M  \/  K  ||  N )  ->  K  ||  ( M  x.  N )
) )

Proof of Theorem ordvdsmul
StepHypRef Expression
1 dvdsmultr1 11108 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  ||  M  ->  K  ||  ( M  x.  N
) ) )
2 dvdsmultr2 11110 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  ||  N  ->  K  ||  ( M  x.  N
) ) )
31, 2jaod 672 1  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  ||  M  \/  K  ||  N )  ->  K  ||  ( M  x.  N )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 664    /\ w3a 924    e. wcel 1438   class class class wbr 3845  (class class class)co 5652    x. cmul 7353   ZZcz 8748    || cdvds 11070
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-setind 4353  ax-cnex 7434  ax-resscn 7435  ax-1cn 7436  ax-1re 7437  ax-icn 7438  ax-addcl 7439  ax-addrcl 7440  ax-mulcl 7441  ax-mulrcl 7442  ax-addcom 7443  ax-mulcom 7444  ax-addass 7445  ax-mulass 7446  ax-distr 7447  ax-i2m1 7448  ax-1rid 7450  ax-0id 7451  ax-rnegex 7452  ax-cnre 7454
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-br 3846  df-opab 3900  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-iota 4980  df-fun 5017  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-sub 7653  df-neg 7654  df-inn 8421  df-n0 8672  df-z 8749  df-dvds 11071
This theorem is referenced by:  euclemma  11399
  Copyright terms: Public domain W3C validator