ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prdisj Unicode version

Theorem prdisj 7493
Description: A Dedekind cut is disjoint. (Contributed by Jim Kingdon, 15-Dec-2019.)
Assertion
Ref Expression
prdisj  |-  ( (
<. L ,  U >.  e. 
P.  /\  A  e.  Q. )  ->  -.  ( A  e.  L  /\  A  e.  U )
)

Proof of Theorem prdisj
Dummy variables  q  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2240 . . . . 5  |-  ( q  =  A  ->  (
q  e.  Q.  <->  A  e.  Q. ) )
21anbi2d 464 . . . 4  |-  ( q  =  A  ->  (
( <. L ,  U >.  e.  P.  /\  q  e.  Q. )  <->  ( <. L ,  U >.  e.  P.  /\  A  e.  Q. )
) )
3 eleq1 2240 . . . . . 6  |-  ( q  =  A  ->  (
q  e.  L  <->  A  e.  L ) )
4 eleq1 2240 . . . . . 6  |-  ( q  =  A  ->  (
q  e.  U  <->  A  e.  U ) )
53, 4anbi12d 473 . . . . 5  |-  ( q  =  A  ->  (
( q  e.  L  /\  q  e.  U
)  <->  ( A  e.  L  /\  A  e.  U ) ) )
65notbid 667 . . . 4  |-  ( q  =  A  ->  ( -.  ( q  e.  L  /\  q  e.  U
)  <->  -.  ( A  e.  L  /\  A  e.  U ) ) )
72, 6imbi12d 234 . . 3  |-  ( q  =  A  ->  (
( ( <. L ,  U >.  e.  P.  /\  q  e.  Q. )  ->  -.  ( q  e.  L  /\  q  e.  U ) )  <->  ( ( <. L ,  U >.  e. 
P.  /\  A  e.  Q. )  ->  -.  ( A  e.  L  /\  A  e.  U )
) ) )
8 elinp 7475 . . . . 5  |-  ( <. L ,  U >.  e. 
P. 
<->  ( ( ( L 
C_  Q.  /\  U  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  U ) )  /\  ( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) )  /\  A. r  e.  Q.  (
r  e.  U  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  U ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  U )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) ) ) ) )
9 simpr2 1004 . . . . 5  |-  ( ( ( ( L  C_  Q.  /\  U  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  U )
)  /\  ( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  (
q  <Q  r  /\  r  e.  L ) )  /\  A. r  e.  Q.  (
r  e.  U  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  U ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  U )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) ) ) )  ->  A. q  e.  Q.  -.  ( q  e.  L  /\  q  e.  U ) )
108, 9sylbi 121 . . . 4  |-  ( <. L ,  U >.  e. 
P.  ->  A. q  e.  Q.  -.  ( q  e.  L  /\  q  e.  U
) )
1110r19.21bi 2565 . . 3  |-  ( (
<. L ,  U >.  e. 
P.  /\  q  e.  Q. )  ->  -.  (
q  e.  L  /\  q  e.  U )
)
127, 11vtoclg 2799 . 2  |-  ( A  e.  Q.  ->  (
( <. L ,  U >.  e.  P.  /\  A  e.  Q. )  ->  -.  ( A  e.  L  /\  A  e.  U
) ) )
1312anabsi7 581 1  |-  ( (
<. L ,  U >.  e. 
P.  /\  A  e.  Q. )  ->  -.  ( A  e.  L  /\  A  e.  U )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    /\ w3a 978    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456    C_ wss 3131   <.cop 3597   class class class wbr 4005   Q.cnq 7281    <Q cltq 7286   P.cnp 7292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-qs 6543  df-ni 7305  df-nqqs 7349  df-inp 7467
This theorem is referenced by:  ltpopr  7596  addcanprleml  7615  addcanprlemu  7616  suplocexprlemdisj  7721  suplocexprlemub  7724
  Copyright terms: Public domain W3C validator