ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prdisj Unicode version

Theorem prdisj 7454
Description: A Dedekind cut is disjoint. (Contributed by Jim Kingdon, 15-Dec-2019.)
Assertion
Ref Expression
prdisj  |-  ( (
<. L ,  U >.  e. 
P.  /\  A  e.  Q. )  ->  -.  ( A  e.  L  /\  A  e.  U )
)

Proof of Theorem prdisj
Dummy variables  q  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2233 . . . . 5  |-  ( q  =  A  ->  (
q  e.  Q.  <->  A  e.  Q. ) )
21anbi2d 461 . . . 4  |-  ( q  =  A  ->  (
( <. L ,  U >.  e.  P.  /\  q  e.  Q. )  <->  ( <. L ,  U >.  e.  P.  /\  A  e.  Q. )
) )
3 eleq1 2233 . . . . . 6  |-  ( q  =  A  ->  (
q  e.  L  <->  A  e.  L ) )
4 eleq1 2233 . . . . . 6  |-  ( q  =  A  ->  (
q  e.  U  <->  A  e.  U ) )
53, 4anbi12d 470 . . . . 5  |-  ( q  =  A  ->  (
( q  e.  L  /\  q  e.  U
)  <->  ( A  e.  L  /\  A  e.  U ) ) )
65notbid 662 . . . 4  |-  ( q  =  A  ->  ( -.  ( q  e.  L  /\  q  e.  U
)  <->  -.  ( A  e.  L  /\  A  e.  U ) ) )
72, 6imbi12d 233 . . 3  |-  ( q  =  A  ->  (
( ( <. L ,  U >.  e.  P.  /\  q  e.  Q. )  ->  -.  ( q  e.  L  /\  q  e.  U ) )  <->  ( ( <. L ,  U >.  e. 
P.  /\  A  e.  Q. )  ->  -.  ( A  e.  L  /\  A  e.  U )
) ) )
8 elinp 7436 . . . . 5  |-  ( <. L ,  U >.  e. 
P. 
<->  ( ( ( L 
C_  Q.  /\  U  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  U ) )  /\  ( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) )  /\  A. r  e.  Q.  (
r  e.  U  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  U ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  U )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) ) ) ) )
9 simpr2 999 . . . . 5  |-  ( ( ( ( L  C_  Q.  /\  U  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  U )
)  /\  ( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  (
q  <Q  r  /\  r  e.  L ) )  /\  A. r  e.  Q.  (
r  e.  U  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  U ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  U )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) ) ) )  ->  A. q  e.  Q.  -.  ( q  e.  L  /\  q  e.  U ) )
108, 9sylbi 120 . . . 4  |-  ( <. L ,  U >.  e. 
P.  ->  A. q  e.  Q.  -.  ( q  e.  L  /\  q  e.  U
) )
1110r19.21bi 2558 . . 3  |-  ( (
<. L ,  U >.  e. 
P.  /\  q  e.  Q. )  ->  -.  (
q  e.  L  /\  q  e.  U )
)
127, 11vtoclg 2790 . 2  |-  ( A  e.  Q.  ->  (
( <. L ,  U >.  e.  P.  /\  A  e.  Q. )  ->  -.  ( A  e.  L  /\  A  e.  U
) ) )
1312anabsi7 576 1  |-  ( (
<. L ,  U >.  e. 
P.  /\  A  e.  Q. )  ->  -.  ( A  e.  L  /\  A  e.  U )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703    /\ w3a 973    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449    C_ wss 3121   <.cop 3586   class class class wbr 3989   Q.cnq 7242    <Q cltq 7247   P.cnp 7253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-qs 6519  df-ni 7266  df-nqqs 7310  df-inp 7428
This theorem is referenced by:  ltpopr  7557  addcanprleml  7576  addcanprlemu  7577  suplocexprlemdisj  7682  suplocexprlemub  7685
  Copyright terms: Public domain W3C validator