ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemex Unicode version

Theorem recexprlemex 7785
Description:  B is the reciprocal of  A. Lemma for recexpr 7786. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
Assertion
Ref Expression
recexprlemex  |-  ( A  e.  P.  ->  ( A  .P.  B )  =  1P )
Distinct variable groups:    x, y, A   
x, B, y

Proof of Theorem recexprlemex
StepHypRef Expression
1 recexpr.1 . . . 4  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
21recexprlemss1l 7783 . . 3  |-  ( A  e.  P.  ->  ( 1st `  ( A  .P.  B ) )  C_  ( 1st `  1P ) )
31recexprlem1ssl 7781 . . 3  |-  ( A  e.  P.  ->  ( 1st `  1P )  C_  ( 1st `  ( A  .P.  B ) ) )
42, 3eqssd 3218 . 2  |-  ( A  e.  P.  ->  ( 1st `  ( A  .P.  B ) )  =  ( 1st `  1P ) )
51recexprlemss1u 7784 . . 3  |-  ( A  e.  P.  ->  ( 2nd `  ( A  .P.  B ) )  C_  ( 2nd `  1P ) )
61recexprlem1ssu 7782 . . 3  |-  ( A  e.  P.  ->  ( 2nd `  1P )  C_  ( 2nd `  ( A  .P.  B ) ) )
75, 6eqssd 3218 . 2  |-  ( A  e.  P.  ->  ( 2nd `  ( A  .P.  B ) )  =  ( 2nd `  1P ) )
81recexprlempr 7780 . . . 4  |-  ( A  e.  P.  ->  B  e.  P. )
9 mulclpr 7720 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  e.  P. )
108, 9mpdan 421 . . 3  |-  ( A  e.  P.  ->  ( A  .P.  B )  e. 
P. )
11 1pr 7702 . . 3  |-  1P  e.  P.
12 preqlu 7620 . . 3  |-  ( ( ( A  .P.  B
)  e.  P.  /\  1P  e.  P. )  -> 
( ( A  .P.  B )  =  1P  <->  ( ( 1st `  ( A  .P.  B ) )  =  ( 1st `  1P )  /\  ( 2nd `  ( A  .P.  B ) )  =  ( 2nd `  1P ) ) ) )
1310, 11, 12sylancl 413 . 2  |-  ( A  e.  P.  ->  (
( A  .P.  B
)  =  1P  <->  ( ( 1st `  ( A  .P.  B ) )  =  ( 1st `  1P )  /\  ( 2nd `  ( A  .P.  B ) )  =  ( 2nd `  1P ) ) ) )
144, 7, 13mpbir2and 947 1  |-  ( A  e.  P.  ->  ( A  .P.  B )  =  1P )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1516    e. wcel 2178   {cab 2193   <.cop 3646   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   1stc1st 6247   2ndc2nd 6248   *Qcrq 7432    <Q cltq 7433   P.cnp 7439   1Pc1p 7440    .P. cmp 7442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-eprel 4354  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-1o 6525  df-2o 6526  df-oadd 6529  df-omul 6530  df-er 6643  df-ec 6645  df-qs 6649  df-ni 7452  df-pli 7453  df-mi 7454  df-lti 7455  df-plpq 7492  df-mpq 7493  df-enq 7495  df-nqqs 7496  df-plqqs 7497  df-mqqs 7498  df-1nqqs 7499  df-rq 7500  df-ltnqqs 7501  df-enq0 7572  df-nq0 7573  df-0nq0 7574  df-plq0 7575  df-mq0 7576  df-inp 7614  df-i1p 7615  df-imp 7617
This theorem is referenced by:  recexpr  7786
  Copyright terms: Public domain W3C validator