ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemex Unicode version

Theorem recexprlemex 7194
Description:  B is the reciprocal of  A. Lemma for recexpr 7195. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
Assertion
Ref Expression
recexprlemex  |-  ( A  e.  P.  ->  ( A  .P.  B )  =  1P )
Distinct variable groups:    x, y, A   
x, B, y

Proof of Theorem recexprlemex
StepHypRef Expression
1 recexpr.1 . . . 4  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
21recexprlemss1l 7192 . . 3  |-  ( A  e.  P.  ->  ( 1st `  ( A  .P.  B ) )  C_  ( 1st `  1P ) )
31recexprlem1ssl 7190 . . 3  |-  ( A  e.  P.  ->  ( 1st `  1P )  C_  ( 1st `  ( A  .P.  B ) ) )
42, 3eqssd 3042 . 2  |-  ( A  e.  P.  ->  ( 1st `  ( A  .P.  B ) )  =  ( 1st `  1P ) )
51recexprlemss1u 7193 . . 3  |-  ( A  e.  P.  ->  ( 2nd `  ( A  .P.  B ) )  C_  ( 2nd `  1P ) )
61recexprlem1ssu 7191 . . 3  |-  ( A  e.  P.  ->  ( 2nd `  1P )  C_  ( 2nd `  ( A  .P.  B ) ) )
75, 6eqssd 3042 . 2  |-  ( A  e.  P.  ->  ( 2nd `  ( A  .P.  B ) )  =  ( 2nd `  1P ) )
81recexprlempr 7189 . . . 4  |-  ( A  e.  P.  ->  B  e.  P. )
9 mulclpr 7129 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  e.  P. )
108, 9mpdan 412 . . 3  |-  ( A  e.  P.  ->  ( A  .P.  B )  e. 
P. )
11 1pr 7111 . . 3  |-  1P  e.  P.
12 preqlu 7029 . . 3  |-  ( ( ( A  .P.  B
)  e.  P.  /\  1P  e.  P. )  -> 
( ( A  .P.  B )  =  1P  <->  ( ( 1st `  ( A  .P.  B ) )  =  ( 1st `  1P )  /\  ( 2nd `  ( A  .P.  B ) )  =  ( 2nd `  1P ) ) ) )
1310, 11, 12sylancl 404 . 2  |-  ( A  e.  P.  ->  (
( A  .P.  B
)  =  1P  <->  ( ( 1st `  ( A  .P.  B ) )  =  ( 1st `  1P )  /\  ( 2nd `  ( A  .P.  B ) )  =  ( 2nd `  1P ) ) ) )
144, 7, 13mpbir2and 890 1  |-  ( A  e.  P.  ->  ( A  .P.  B )  =  1P )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1289   E.wex 1426    e. wcel 1438   {cab 2074   <.cop 3449   class class class wbr 3845   ` cfv 5015  (class class class)co 5652   1stc1st 5909   2ndc2nd 5910   *Qcrq 6841    <Q cltq 6842   P.cnp 6848   1Pc1p 6849    .P. cmp 6851
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-eprel 4116  df-id 4120  df-po 4123  df-iso 4124  df-iord 4193  df-on 4195  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-recs 6070  df-irdg 6135  df-1o 6181  df-2o 6182  df-oadd 6185  df-omul 6186  df-er 6290  df-ec 6292  df-qs 6296  df-ni 6861  df-pli 6862  df-mi 6863  df-lti 6864  df-plpq 6901  df-mpq 6902  df-enq 6904  df-nqqs 6905  df-plqqs 6906  df-mqqs 6907  df-1nqqs 6908  df-rq 6909  df-ltnqqs 6910  df-enq0 6981  df-nq0 6982  df-0nq0 6983  df-plq0 6984  df-mq0 6985  df-inp 7023  df-i1p 7024  df-imp 7026
This theorem is referenced by:  recexpr  7195
  Copyright terms: Public domain W3C validator