ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemex Unicode version

Theorem recexprlemex 7699
Description:  B is the reciprocal of  A. Lemma for recexpr 7700. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
Assertion
Ref Expression
recexprlemex  |-  ( A  e.  P.  ->  ( A  .P.  B )  =  1P )
Distinct variable groups:    x, y, A   
x, B, y

Proof of Theorem recexprlemex
StepHypRef Expression
1 recexpr.1 . . . 4  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
21recexprlemss1l 7697 . . 3  |-  ( A  e.  P.  ->  ( 1st `  ( A  .P.  B ) )  C_  ( 1st `  1P ) )
31recexprlem1ssl 7695 . . 3  |-  ( A  e.  P.  ->  ( 1st `  1P )  C_  ( 1st `  ( A  .P.  B ) ) )
42, 3eqssd 3197 . 2  |-  ( A  e.  P.  ->  ( 1st `  ( A  .P.  B ) )  =  ( 1st `  1P ) )
51recexprlemss1u 7698 . . 3  |-  ( A  e.  P.  ->  ( 2nd `  ( A  .P.  B ) )  C_  ( 2nd `  1P ) )
61recexprlem1ssu 7696 . . 3  |-  ( A  e.  P.  ->  ( 2nd `  1P )  C_  ( 2nd `  ( A  .P.  B ) ) )
75, 6eqssd 3197 . 2  |-  ( A  e.  P.  ->  ( 2nd `  ( A  .P.  B ) )  =  ( 2nd `  1P ) )
81recexprlempr 7694 . . . 4  |-  ( A  e.  P.  ->  B  e.  P. )
9 mulclpr 7634 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  e.  P. )
108, 9mpdan 421 . . 3  |-  ( A  e.  P.  ->  ( A  .P.  B )  e. 
P. )
11 1pr 7616 . . 3  |-  1P  e.  P.
12 preqlu 7534 . . 3  |-  ( ( ( A  .P.  B
)  e.  P.  /\  1P  e.  P. )  -> 
( ( A  .P.  B )  =  1P  <->  ( ( 1st `  ( A  .P.  B ) )  =  ( 1st `  1P )  /\  ( 2nd `  ( A  .P.  B ) )  =  ( 2nd `  1P ) ) ) )
1310, 11, 12sylancl 413 . 2  |-  ( A  e.  P.  ->  (
( A  .P.  B
)  =  1P  <->  ( ( 1st `  ( A  .P.  B ) )  =  ( 1st `  1P )  /\  ( 2nd `  ( A  .P.  B ) )  =  ( 2nd `  1P ) ) ) )
144, 7, 13mpbir2and 946 1  |-  ( A  e.  P.  ->  ( A  .P.  B )  =  1P )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1503    e. wcel 2164   {cab 2179   <.cop 3622   class class class wbr 4030   ` cfv 5255  (class class class)co 5919   1stc1st 6193   2ndc2nd 6194   *Qcrq 7346    <Q cltq 7347   P.cnp 7353   1Pc1p 7354    .P. cmp 7356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-2o 6472  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415  df-enq0 7486  df-nq0 7487  df-0nq0 7488  df-plq0 7489  df-mq0 7490  df-inp 7528  df-i1p 7529  df-imp 7531
This theorem is referenced by:  recexpr  7700
  Copyright terms: Public domain W3C validator