ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemex Unicode version

Theorem recexprlemex 7578
Description:  B is the reciprocal of  A. Lemma for recexpr 7579. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
Assertion
Ref Expression
recexprlemex  |-  ( A  e.  P.  ->  ( A  .P.  B )  =  1P )
Distinct variable groups:    x, y, A   
x, B, y

Proof of Theorem recexprlemex
StepHypRef Expression
1 recexpr.1 . . . 4  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
21recexprlemss1l 7576 . . 3  |-  ( A  e.  P.  ->  ( 1st `  ( A  .P.  B ) )  C_  ( 1st `  1P ) )
31recexprlem1ssl 7574 . . 3  |-  ( A  e.  P.  ->  ( 1st `  1P )  C_  ( 1st `  ( A  .P.  B ) ) )
42, 3eqssd 3159 . 2  |-  ( A  e.  P.  ->  ( 1st `  ( A  .P.  B ) )  =  ( 1st `  1P ) )
51recexprlemss1u 7577 . . 3  |-  ( A  e.  P.  ->  ( 2nd `  ( A  .P.  B ) )  C_  ( 2nd `  1P ) )
61recexprlem1ssu 7575 . . 3  |-  ( A  e.  P.  ->  ( 2nd `  1P )  C_  ( 2nd `  ( A  .P.  B ) ) )
75, 6eqssd 3159 . 2  |-  ( A  e.  P.  ->  ( 2nd `  ( A  .P.  B ) )  =  ( 2nd `  1P ) )
81recexprlempr 7573 . . . 4  |-  ( A  e.  P.  ->  B  e.  P. )
9 mulclpr 7513 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  e.  P. )
108, 9mpdan 418 . . 3  |-  ( A  e.  P.  ->  ( A  .P.  B )  e. 
P. )
11 1pr 7495 . . 3  |-  1P  e.  P.
12 preqlu 7413 . . 3  |-  ( ( ( A  .P.  B
)  e.  P.  /\  1P  e.  P. )  -> 
( ( A  .P.  B )  =  1P  <->  ( ( 1st `  ( A  .P.  B ) )  =  ( 1st `  1P )  /\  ( 2nd `  ( A  .P.  B ) )  =  ( 2nd `  1P ) ) ) )
1310, 11, 12sylancl 410 . 2  |-  ( A  e.  P.  ->  (
( A  .P.  B
)  =  1P  <->  ( ( 1st `  ( A  .P.  B ) )  =  ( 1st `  1P )  /\  ( 2nd `  ( A  .P.  B ) )  =  ( 2nd `  1P ) ) ) )
144, 7, 13mpbir2and 934 1  |-  ( A  e.  P.  ->  ( A  .P.  B )  =  1P )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343   E.wex 1480    e. wcel 2136   {cab 2151   <.cop 3579   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   1stc1st 6106   2ndc2nd 6107   *Qcrq 7225    <Q cltq 7226   P.cnp 7232   1Pc1p 7233    .P. cmp 7235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-i1p 7408  df-imp 7410
This theorem is referenced by:  recexpr  7579
  Copyright terms: Public domain W3C validator