ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemex Unicode version

Theorem recexprlemex 7824
Description:  B is the reciprocal of  A. Lemma for recexpr 7825. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
Assertion
Ref Expression
recexprlemex  |-  ( A  e.  P.  ->  ( A  .P.  B )  =  1P )
Distinct variable groups:    x, y, A   
x, B, y

Proof of Theorem recexprlemex
StepHypRef Expression
1 recexpr.1 . . . 4  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
21recexprlemss1l 7822 . . 3  |-  ( A  e.  P.  ->  ( 1st `  ( A  .P.  B ) )  C_  ( 1st `  1P ) )
31recexprlem1ssl 7820 . . 3  |-  ( A  e.  P.  ->  ( 1st `  1P )  C_  ( 1st `  ( A  .P.  B ) ) )
42, 3eqssd 3241 . 2  |-  ( A  e.  P.  ->  ( 1st `  ( A  .P.  B ) )  =  ( 1st `  1P ) )
51recexprlemss1u 7823 . . 3  |-  ( A  e.  P.  ->  ( 2nd `  ( A  .P.  B ) )  C_  ( 2nd `  1P ) )
61recexprlem1ssu 7821 . . 3  |-  ( A  e.  P.  ->  ( 2nd `  1P )  C_  ( 2nd `  ( A  .P.  B ) ) )
75, 6eqssd 3241 . 2  |-  ( A  e.  P.  ->  ( 2nd `  ( A  .P.  B ) )  =  ( 2nd `  1P ) )
81recexprlempr 7819 . . . 4  |-  ( A  e.  P.  ->  B  e.  P. )
9 mulclpr 7759 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  e.  P. )
108, 9mpdan 421 . . 3  |-  ( A  e.  P.  ->  ( A  .P.  B )  e. 
P. )
11 1pr 7741 . . 3  |-  1P  e.  P.
12 preqlu 7659 . . 3  |-  ( ( ( A  .P.  B
)  e.  P.  /\  1P  e.  P. )  -> 
( ( A  .P.  B )  =  1P  <->  ( ( 1st `  ( A  .P.  B ) )  =  ( 1st `  1P )  /\  ( 2nd `  ( A  .P.  B ) )  =  ( 2nd `  1P ) ) ) )
1310, 11, 12sylancl 413 . 2  |-  ( A  e.  P.  ->  (
( A  .P.  B
)  =  1P  <->  ( ( 1st `  ( A  .P.  B ) )  =  ( 1st `  1P )  /\  ( 2nd `  ( A  .P.  B ) )  =  ( 2nd `  1P ) ) ) )
144, 7, 13mpbir2and 950 1  |-  ( A  e.  P.  ->  ( A  .P.  B )  =  1P )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395   E.wex 1538    e. wcel 2200   {cab 2215   <.cop 3669   class class class wbr 4083   ` cfv 5318  (class class class)co 6001   1stc1st 6284   2ndc2nd 6285   *Qcrq 7471    <Q cltq 7472   P.cnp 7478   1Pc1p 7479    .P. cmp 7481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-eprel 4380  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-1o 6562  df-2o 6563  df-oadd 6566  df-omul 6567  df-er 6680  df-ec 6682  df-qs 6686  df-ni 7491  df-pli 7492  df-mi 7493  df-lti 7494  df-plpq 7531  df-mpq 7532  df-enq 7534  df-nqqs 7535  df-plqqs 7536  df-mqqs 7537  df-1nqqs 7538  df-rq 7539  df-ltnqqs 7540  df-enq0 7611  df-nq0 7612  df-0nq0 7613  df-plq0 7614  df-mq0 7615  df-inp 7653  df-i1p 7654  df-imp 7656
This theorem is referenced by:  recexpr  7825
  Copyright terms: Public domain W3C validator