ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aptipr Unicode version

Theorem aptipr 7642
Description: Apartness of positive reals is tight. (Contributed by Jim Kingdon, 28-Jan-2020.)
Assertion
Ref Expression
aptipr  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  ( A  <P  B  \/  B  <P  A ) )  ->  A  =  B )

Proof of Theorem aptipr
StepHypRef Expression
1 simp1 997 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  ( A  <P  B  \/  B  <P  A ) )  ->  A  e.  P. )
2 simp2 998 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  ( A  <P  B  \/  B  <P  A ) )  ->  B  e.  P. )
3 ioran 752 . . . . . . 7  |-  ( -.  ( A  <P  B  \/  B  <P  A )  <->  ( -.  A  <P  B  /\  -.  B  <P  A ) )
43biimpi 120 . . . . . 6  |-  ( -.  ( A  <P  B  \/  B  <P  A )  -> 
( -.  A  <P  B  /\  -.  B  <P  A ) )
543ad2ant3 1020 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  ( A  <P  B  \/  B  <P  A ) )  ->  ( -.  A  <P  B  /\  -.  B  <P  A ) )
65simprd 114 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  ( A  <P  B  \/  B  <P  A ) )  ->  -.  B  <P  A )
7 aptiprleml 7640 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  B  <P  A )  -> 
( 1st `  A
)  C_  ( 1st `  B ) )
81, 2, 6, 7syl3anc 1238 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  ( A  <P  B  \/  B  <P  A ) )  ->  ( 1st `  A
)  C_  ( 1st `  B ) )
95simpld 112 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  ( A  <P  B  \/  B  <P  A ) )  ->  -.  A  <P  B )
10 aptiprleml 7640 . . . 4  |-  ( ( B  e.  P.  /\  A  e.  P.  /\  -.  A  <P  B )  -> 
( 1st `  B
)  C_  ( 1st `  A ) )
112, 1, 9, 10syl3anc 1238 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  ( A  <P  B  \/  B  <P  A ) )  ->  ( 1st `  B
)  C_  ( 1st `  A ) )
128, 11eqssd 3174 . 2  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  ( A  <P  B  \/  B  <P  A ) )  ->  ( 1st `  A
)  =  ( 1st `  B ) )
13 aptiprlemu 7641 . . . 4  |-  ( ( B  e.  P.  /\  A  e.  P.  /\  -.  A  <P  B )  -> 
( 2nd `  A
)  C_  ( 2nd `  B ) )
142, 1, 9, 13syl3anc 1238 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  ( A  <P  B  \/  B  <P  A ) )  ->  ( 2nd `  A
)  C_  ( 2nd `  B ) )
15 aptiprlemu 7641 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  B  <P  A )  -> 
( 2nd `  B
)  C_  ( 2nd `  A ) )
161, 2, 6, 15syl3anc 1238 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  ( A  <P  B  \/  B  <P  A ) )  ->  ( 2nd `  B
)  C_  ( 2nd `  A ) )
1714, 16eqssd 3174 . 2  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  ( A  <P  B  \/  B  <P  A ) )  ->  ( 2nd `  A
)  =  ( 2nd `  B ) )
18 preqlu 7473 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  =  B  <-> 
( ( 1st `  A
)  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B
) ) ) )
19183adant3 1017 . 2  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  ( A  <P  B  \/  B  <P  A ) )  ->  ( A  =  B  <->  ( ( 1st `  A )  =  ( 1st `  B )  /\  ( 2nd `  A
)  =  ( 2nd `  B ) ) ) )
2012, 17, 19mpbir2and 944 1  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  ( A  <P  B  \/  B  <P  A ) )  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    /\ w3a 978    = wceq 1353    e. wcel 2148    C_ wss 3131   class class class wbr 4005   ` cfv 5218   1stc1st 6141   2ndc2nd 6142   P.cnp 7292    <P cltp 7296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-1o 6419  df-2o 6420  df-oadd 6423  df-omul 6424  df-er 6537  df-ec 6539  df-qs 6543  df-ni 7305  df-pli 7306  df-mi 7307  df-lti 7308  df-plpq 7345  df-mpq 7346  df-enq 7348  df-nqqs 7349  df-plqqs 7350  df-mqqs 7351  df-1nqqs 7352  df-rq 7353  df-ltnqqs 7354  df-enq0 7425  df-nq0 7426  df-0nq0 7427  df-plq0 7428  df-mq0 7429  df-inp 7467  df-iltp 7471
This theorem is referenced by:  aptisr  7780
  Copyright terms: Public domain W3C validator