ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aptipr Unicode version

Theorem aptipr 7708
Description: Apartness of positive reals is tight. (Contributed by Jim Kingdon, 28-Jan-2020.)
Assertion
Ref Expression
aptipr  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  ( A  <P  B  \/  B  <P  A ) )  ->  A  =  B )

Proof of Theorem aptipr
StepHypRef Expression
1 simp1 999 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  ( A  <P  B  \/  B  <P  A ) )  ->  A  e.  P. )
2 simp2 1000 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  ( A  <P  B  \/  B  <P  A ) )  ->  B  e.  P. )
3 ioran 753 . . . . . . 7  |-  ( -.  ( A  <P  B  \/  B  <P  A )  <->  ( -.  A  <P  B  /\  -.  B  <P  A ) )
43biimpi 120 . . . . . 6  |-  ( -.  ( A  <P  B  \/  B  <P  A )  -> 
( -.  A  <P  B  /\  -.  B  <P  A ) )
543ad2ant3 1022 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  ( A  <P  B  \/  B  <P  A ) )  ->  ( -.  A  <P  B  /\  -.  B  <P  A ) )
65simprd 114 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  ( A  <P  B  \/  B  <P  A ) )  ->  -.  B  <P  A )
7 aptiprleml 7706 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  B  <P  A )  -> 
( 1st `  A
)  C_  ( 1st `  B ) )
81, 2, 6, 7syl3anc 1249 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  ( A  <P  B  \/  B  <P  A ) )  ->  ( 1st `  A
)  C_  ( 1st `  B ) )
95simpld 112 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  ( A  <P  B  \/  B  <P  A ) )  ->  -.  A  <P  B )
10 aptiprleml 7706 . . . 4  |-  ( ( B  e.  P.  /\  A  e.  P.  /\  -.  A  <P  B )  -> 
( 1st `  B
)  C_  ( 1st `  A ) )
112, 1, 9, 10syl3anc 1249 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  ( A  <P  B  \/  B  <P  A ) )  ->  ( 1st `  B
)  C_  ( 1st `  A ) )
128, 11eqssd 3200 . 2  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  ( A  <P  B  \/  B  <P  A ) )  ->  ( 1st `  A
)  =  ( 1st `  B ) )
13 aptiprlemu 7707 . . . 4  |-  ( ( B  e.  P.  /\  A  e.  P.  /\  -.  A  <P  B )  -> 
( 2nd `  A
)  C_  ( 2nd `  B ) )
142, 1, 9, 13syl3anc 1249 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  ( A  <P  B  \/  B  <P  A ) )  ->  ( 2nd `  A
)  C_  ( 2nd `  B ) )
15 aptiprlemu 7707 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  B  <P  A )  -> 
( 2nd `  B
)  C_  ( 2nd `  A ) )
161, 2, 6, 15syl3anc 1249 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  ( A  <P  B  \/  B  <P  A ) )  ->  ( 2nd `  B
)  C_  ( 2nd `  A ) )
1714, 16eqssd 3200 . 2  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  ( A  <P  B  \/  B  <P  A ) )  ->  ( 2nd `  A
)  =  ( 2nd `  B ) )
18 preqlu 7539 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  =  B  <-> 
( ( 1st `  A
)  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B
) ) ) )
19183adant3 1019 . 2  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  ( A  <P  B  \/  B  <P  A ) )  ->  ( A  =  B  <->  ( ( 1st `  A )  =  ( 1st `  B )  /\  ( 2nd `  A
)  =  ( 2nd `  B ) ) ) )
2012, 17, 19mpbir2and 946 1  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  ( A  <P  B  \/  B  <P  A ) )  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2167    C_ wss 3157   class class class wbr 4033   ` cfv 5258   1stc1st 6196   2ndc2nd 6197   P.cnp 7358    <P cltp 7362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-2o 6475  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-pli 7372  df-mi 7373  df-lti 7374  df-plpq 7411  df-mpq 7412  df-enq 7414  df-nqqs 7415  df-plqqs 7416  df-mqqs 7417  df-1nqqs 7418  df-rq 7419  df-ltnqqs 7420  df-enq0 7491  df-nq0 7492  df-0nq0 7493  df-plq0 7494  df-mq0 7495  df-inp 7533  df-iltp 7537
This theorem is referenced by:  aptisr  7846
  Copyright terms: Public domain W3C validator