ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aptipr Unicode version

Theorem aptipr 7703
Description: Apartness of positive reals is tight. (Contributed by Jim Kingdon, 28-Jan-2020.)
Assertion
Ref Expression
aptipr  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  ( A  <P  B  \/  B  <P  A ) )  ->  A  =  B )

Proof of Theorem aptipr
StepHypRef Expression
1 simp1 999 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  ( A  <P  B  \/  B  <P  A ) )  ->  A  e.  P. )
2 simp2 1000 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  ( A  <P  B  \/  B  <P  A ) )  ->  B  e.  P. )
3 ioran 753 . . . . . . 7  |-  ( -.  ( A  <P  B  \/  B  <P  A )  <->  ( -.  A  <P  B  /\  -.  B  <P  A ) )
43biimpi 120 . . . . . 6  |-  ( -.  ( A  <P  B  \/  B  <P  A )  -> 
( -.  A  <P  B  /\  -.  B  <P  A ) )
543ad2ant3 1022 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  ( A  <P  B  \/  B  <P  A ) )  ->  ( -.  A  <P  B  /\  -.  B  <P  A ) )
65simprd 114 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  ( A  <P  B  \/  B  <P  A ) )  ->  -.  B  <P  A )
7 aptiprleml 7701 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  B  <P  A )  -> 
( 1st `  A
)  C_  ( 1st `  B ) )
81, 2, 6, 7syl3anc 1249 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  ( A  <P  B  \/  B  <P  A ) )  ->  ( 1st `  A
)  C_  ( 1st `  B ) )
95simpld 112 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  ( A  <P  B  \/  B  <P  A ) )  ->  -.  A  <P  B )
10 aptiprleml 7701 . . . 4  |-  ( ( B  e.  P.  /\  A  e.  P.  /\  -.  A  <P  B )  -> 
( 1st `  B
)  C_  ( 1st `  A ) )
112, 1, 9, 10syl3anc 1249 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  ( A  <P  B  \/  B  <P  A ) )  ->  ( 1st `  B
)  C_  ( 1st `  A ) )
128, 11eqssd 3197 . 2  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  ( A  <P  B  \/  B  <P  A ) )  ->  ( 1st `  A
)  =  ( 1st `  B ) )
13 aptiprlemu 7702 . . . 4  |-  ( ( B  e.  P.  /\  A  e.  P.  /\  -.  A  <P  B )  -> 
( 2nd `  A
)  C_  ( 2nd `  B ) )
142, 1, 9, 13syl3anc 1249 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  ( A  <P  B  \/  B  <P  A ) )  ->  ( 2nd `  A
)  C_  ( 2nd `  B ) )
15 aptiprlemu 7702 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  B  <P  A )  -> 
( 2nd `  B
)  C_  ( 2nd `  A ) )
161, 2, 6, 15syl3anc 1249 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  ( A  <P  B  \/  B  <P  A ) )  ->  ( 2nd `  B
)  C_  ( 2nd `  A ) )
1714, 16eqssd 3197 . 2  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  ( A  <P  B  \/  B  <P  A ) )  ->  ( 2nd `  A
)  =  ( 2nd `  B ) )
18 preqlu 7534 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  =  B  <-> 
( ( 1st `  A
)  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B
) ) ) )
19183adant3 1019 . 2  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  ( A  <P  B  \/  B  <P  A ) )  ->  ( A  =  B  <->  ( ( 1st `  A )  =  ( 1st `  B )  /\  ( 2nd `  A
)  =  ( 2nd `  B ) ) ) )
2012, 17, 19mpbir2and 946 1  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  ( A  <P  B  \/  B  <P  A ) )  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2164    C_ wss 3154   class class class wbr 4030   ` cfv 5255   1stc1st 6193   2ndc2nd 6194   P.cnp 7353    <P cltp 7357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-2o 6472  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415  df-enq0 7486  df-nq0 7487  df-0nq0 7488  df-plq0 7489  df-mq0 7490  df-inp 7528  df-iltp 7532
This theorem is referenced by:  aptisr  7841
  Copyright terms: Public domain W3C validator