ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distrprg Unicode version

Theorem distrprg 7672
Description: Multiplication of positive reals is distributive. Proposition 9-3.7(iii) of [Gleason] p. 124. (Contributed by Jim Kingdon, 12-Dec-2019.)
Assertion
Ref Expression
distrprg  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  ( B  +P.  C ) )  =  ( ( A  .P.  B
)  +P.  ( A  .P.  C ) ) )

Proof of Theorem distrprg
StepHypRef Expression
1 distrlem1prl 7666 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( 1st `  ( A  .P.  ( B  +P.  C ) ) )  C_  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C
) ) ) )
2 distrlem5prl 7670 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C
) ) )  C_  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
31, 2eqssd 3201 . 2  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( 1st `  ( A  .P.  ( B  +P.  C ) ) )  =  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) )
4 distrlem1pru 7667 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) )  C_  ( 2nd `  ( ( A  .P.  B )  +P.  ( A  .P.  C
) ) ) )
5 distrlem5pru 7671 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( 2nd `  ( ( A  .P.  B )  +P.  ( A  .P.  C
) ) )  C_  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) )
64, 5eqssd 3201 . 2  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) )  =  ( 2nd `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) )
7 simp1 999 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  A  e.  P. )
8 simp2 1000 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  B  e.  P. )
9 simp3 1001 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  C  e.  P. )
10 addclpr 7621 . . . . 5  |-  ( ( B  e.  P.  /\  C  e.  P. )  ->  ( B  +P.  C
)  e.  P. )
118, 9, 10syl2anc 411 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( B  +P.  C )  e. 
P. )
12 mulclpr 7656 . . . 4  |-  ( ( A  e.  P.  /\  ( B  +P.  C )  e.  P. )  -> 
( A  .P.  ( B  +P.  C ) )  e.  P. )
137, 11, 12syl2anc 411 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  ( B  +P.  C ) )  e.  P. )
14 mulclpr 7656 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  e.  P. )
157, 8, 14syl2anc 411 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  B )  e. 
P. )
16 mulclpr 7656 . . . . 5  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  C
)  e.  P. )
177, 9, 16syl2anc 411 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  C )  e. 
P. )
18 addclpr 7621 . . . 4  |-  ( ( ( A  .P.  B
)  e.  P.  /\  ( A  .P.  C )  e.  P. )  -> 
( ( A  .P.  B )  +P.  ( A  .P.  C ) )  e.  P. )
1915, 17, 18syl2anc 411 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( A  .P.  B
)  +P.  ( A  .P.  C ) )  e. 
P. )
20 preqlu 7556 . . 3  |-  ( ( ( A  .P.  ( B  +P.  C ) )  e.  P.  /\  (
( A  .P.  B
)  +P.  ( A  .P.  C ) )  e. 
P. )  ->  (
( A  .P.  ( B  +P.  C ) )  =  ( ( A  .P.  B )  +P.  ( A  .P.  C
) )  <->  ( ( 1st `  ( A  .P.  ( B  +P.  C ) ) )  =  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) )  /\  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) )  =  ( 2nd `  (
( A  .P.  B
)  +P.  ( A  .P.  C ) ) ) ) ) )
2113, 19, 20syl2anc 411 . 2  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( A  .P.  ( B  +P.  C ) )  =  ( ( A  .P.  B )  +P.  ( A  .P.  C
) )  <->  ( ( 1st `  ( A  .P.  ( B  +P.  C ) ) )  =  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) )  /\  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) )  =  ( 2nd `  (
( A  .P.  B
)  +P.  ( A  .P.  C ) ) ) ) ) )
223, 6, 21mpbir2and 946 1  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  ( B  +P.  C ) )  =  ( ( A  .P.  B
)  +P.  ( A  .P.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   ` cfv 5259  (class class class)co 5925   1stc1st 6205   2ndc2nd 6206   P.cnp 7375    +P. cpp 7377    .P. cmp 7378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-2o 6484  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-lti 7391  df-plpq 7428  df-mpq 7429  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-mqqs 7434  df-1nqqs 7435  df-rq 7436  df-ltnqqs 7437  df-enq0 7508  df-nq0 7509  df-0nq0 7510  df-plq0 7511  df-mq0 7512  df-inp 7550  df-iplp 7552  df-imp 7553
This theorem is referenced by:  ltmprr  7726  mulcmpblnrlemg  7824  mulasssrg  7842  distrsrg  7843  m1m1sr  7845  1idsr  7852  recexgt0sr  7857  mulgt0sr  7862  mulextsr1lem  7864  recidpirqlemcalc  7941
  Copyright terms: Public domain W3C validator