ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distrprg Unicode version

Theorem distrprg 7529
Description: Multiplication of positive reals is distributive. Proposition 9-3.7(iii) of [Gleason] p. 124. (Contributed by Jim Kingdon, 12-Dec-2019.)
Assertion
Ref Expression
distrprg  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  ( B  +P.  C ) )  =  ( ( A  .P.  B
)  +P.  ( A  .P.  C ) ) )

Proof of Theorem distrprg
StepHypRef Expression
1 distrlem1prl 7523 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( 1st `  ( A  .P.  ( B  +P.  C ) ) )  C_  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C
) ) ) )
2 distrlem5prl 7527 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C
) ) )  C_  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
31, 2eqssd 3159 . 2  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( 1st `  ( A  .P.  ( B  +P.  C ) ) )  =  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) )
4 distrlem1pru 7524 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) )  C_  ( 2nd `  ( ( A  .P.  B )  +P.  ( A  .P.  C
) ) ) )
5 distrlem5pru 7528 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( 2nd `  ( ( A  .P.  B )  +P.  ( A  .P.  C
) ) )  C_  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) )
64, 5eqssd 3159 . 2  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) )  =  ( 2nd `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) )
7 simp1 987 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  A  e.  P. )
8 simp2 988 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  B  e.  P. )
9 simp3 989 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  C  e.  P. )
10 addclpr 7478 . . . . 5  |-  ( ( B  e.  P.  /\  C  e.  P. )  ->  ( B  +P.  C
)  e.  P. )
118, 9, 10syl2anc 409 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( B  +P.  C )  e. 
P. )
12 mulclpr 7513 . . . 4  |-  ( ( A  e.  P.  /\  ( B  +P.  C )  e.  P. )  -> 
( A  .P.  ( B  +P.  C ) )  e.  P. )
137, 11, 12syl2anc 409 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  ( B  +P.  C ) )  e.  P. )
14 mulclpr 7513 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  e.  P. )
157, 8, 14syl2anc 409 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  B )  e. 
P. )
16 mulclpr 7513 . . . . 5  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  C
)  e.  P. )
177, 9, 16syl2anc 409 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  C )  e. 
P. )
18 addclpr 7478 . . . 4  |-  ( ( ( A  .P.  B
)  e.  P.  /\  ( A  .P.  C )  e.  P. )  -> 
( ( A  .P.  B )  +P.  ( A  .P.  C ) )  e.  P. )
1915, 17, 18syl2anc 409 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( A  .P.  B
)  +P.  ( A  .P.  C ) )  e. 
P. )
20 preqlu 7413 . . 3  |-  ( ( ( A  .P.  ( B  +P.  C ) )  e.  P.  /\  (
( A  .P.  B
)  +P.  ( A  .P.  C ) )  e. 
P. )  ->  (
( A  .P.  ( B  +P.  C ) )  =  ( ( A  .P.  B )  +P.  ( A  .P.  C
) )  <->  ( ( 1st `  ( A  .P.  ( B  +P.  C ) ) )  =  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) )  /\  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) )  =  ( 2nd `  (
( A  .P.  B
)  +P.  ( A  .P.  C ) ) ) ) ) )
2113, 19, 20syl2anc 409 . 2  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( A  .P.  ( B  +P.  C ) )  =  ( ( A  .P.  B )  +P.  ( A  .P.  C
) )  <->  ( ( 1st `  ( A  .P.  ( B  +P.  C ) ) )  =  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) )  /\  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) )  =  ( 2nd `  (
( A  .P.  B
)  +P.  ( A  .P.  C ) ) ) ) ) )
223, 6, 21mpbir2and 934 1  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  ( B  +P.  C ) )  =  ( ( A  .P.  B
)  +P.  ( A  .P.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136   ` cfv 5188  (class class class)co 5842   1stc1st 6106   2ndc2nd 6107   P.cnp 7232    +P. cpp 7234    .P. cmp 7235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-iplp 7409  df-imp 7410
This theorem is referenced by:  ltmprr  7583  mulcmpblnrlemg  7681  mulasssrg  7699  distrsrg  7700  m1m1sr  7702  1idsr  7709  recexgt0sr  7714  mulgt0sr  7719  mulextsr1lem  7721  recidpirqlemcalc  7798
  Copyright terms: Public domain W3C validator