| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mplbasss | Unicode version | ||
| Description: The set of polynomials is a subset of the set of power series. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| mplval2.p |
|
| mplval2.s |
|
| mplval2.u |
|
| mplbasss.b |
|
| Ref | Expression |
|---|---|
| mplbasss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldmmpl 14618 |
. . . . . . 7
| |
| 2 | fnmpl 14622 |
. . . . . . . 8
| |
| 3 | fnrel 5395 |
. . . . . . . 8
| |
| 4 | 2, 3 | ax-mp 5 |
. . . . . . 7
|
| 5 | mplval2.p |
. . . . . . 7
| |
| 6 | mplval2.u |
. . . . . . 7
| |
| 7 | 1, 4, 5, 6 | relelbasov 13061 |
. . . . . 6
|
| 8 | mplval2.s |
. . . . . . 7
| |
| 9 | mplbasss.b |
. . . . . . 7
| |
| 10 | eqid 2209 |
. . . . . . 7
| |
| 11 | 5, 8, 9, 10, 6 | mplbascoe 14620 |
. . . . . 6
|
| 12 | 7, 11 | syl 14 |
. . . . 5
|
| 13 | ssrab2 3289 |
. . . . 5
| |
| 14 | 12, 13 | eqsstrdi 3256 |
. . . 4
|
| 15 | 14 | sseld 3203 |
. . 3
|
| 16 | 15 | pm2.43i 49 |
. 2
|
| 17 | 16 | ssriv 3208 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-i2m1 8072 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-tp 3654 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-of 6188 df-1st 6256 df-2nd 6257 df-map 6767 df-ixp 6816 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-9 9144 df-n0 9338 df-ndx 13001 df-slot 13002 df-base 13004 df-sets 13005 df-iress 13006 df-plusg 13089 df-mulr 13090 df-sca 13092 df-vsca 13093 df-tset 13095 df-rest 13240 df-topn 13241 df-topgen 13259 df-pt 13260 df-psr 14592 df-mplcoe 14593 |
| This theorem is referenced by: mplelf 14626 mplsubgfilemcl 14628 mplsubgfileminv 14629 mplsubgfi 14630 mpladd 14633 mplnegfi 14634 |
| Copyright terms: Public domain | W3C validator |