ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relelbasov GIF version

Theorem relelbasov 13061
Description: Utility theorem: reverse closure for any structure defined as a two-argument function. (Contributed by Mario Carneiro, 3-Oct-2015.)
Hypotheses
Ref Expression
elbasov.o Rel dom 𝑂
relelbasov.r Rel 𝑂
elbasov.s 𝑆 = (𝑋𝑂𝑌)
elbasov.b 𝐵 = (Base‘𝑆)
Assertion
Ref Expression
relelbasov (𝐴𝐵 → (𝑋 ∈ V ∧ 𝑌 ∈ V))

Proof of Theorem relelbasov
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 elbasov.b . . 3 𝐵 = (Base‘𝑆)
21basm 13060 . 2 (𝐴𝐵 → ∃𝑗 𝑗𝑆)
3 elbasov.o . . . . 5 Rel dom 𝑂
4 df-rel 4703 . . . . 5 (Rel dom 𝑂 ↔ dom 𝑂 ⊆ (V × V))
53, 4mpbi 145 . . . 4 dom 𝑂 ⊆ (V × V)
6 relelbasov.r . . . . 5 Rel 𝑂
7 simpr 110 . . . . . . 7 ((𝐴𝐵𝑗𝑆) → 𝑗𝑆)
8 elbasov.s . . . . . . 7 𝑆 = (𝑋𝑂𝑌)
97, 8eleqtrdi 2302 . . . . . 6 ((𝐴𝐵𝑗𝑆) → 𝑗 ∈ (𝑋𝑂𝑌))
10 df-ov 5977 . . . . . 6 (𝑋𝑂𝑌) = (𝑂‘⟨𝑋, 𝑌⟩)
119, 10eleqtrdi 2302 . . . . 5 ((𝐴𝐵𝑗𝑆) → 𝑗 ∈ (𝑂‘⟨𝑋, 𝑌⟩))
12 relelfvdm 5635 . . . . 5 ((Rel 𝑂𝑗 ∈ (𝑂‘⟨𝑋, 𝑌⟩)) → ⟨𝑋, 𝑌⟩ ∈ dom 𝑂)
136, 11, 12sylancr 414 . . . 4 ((𝐴𝐵𝑗𝑆) → ⟨𝑋, 𝑌⟩ ∈ dom 𝑂)
145, 13sselid 3202 . . 3 ((𝐴𝐵𝑗𝑆) → ⟨𝑋, 𝑌⟩ ∈ (V × V))
15 opelxp 4726 . . 3 (⟨𝑋, 𝑌⟩ ∈ (V × V) ↔ (𝑋 ∈ V ∧ 𝑌 ∈ V))
1614, 15sylib 122 . 2 ((𝐴𝐵𝑗𝑆) → (𝑋 ∈ V ∧ 𝑌 ∈ V))
172, 16exlimddv 1925 1 (𝐴𝐵 → (𝑋 ∈ V ∧ 𝑌 ∈ V))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180  Vcvv 2779  wss 3177  cop 3649   × cxp 4694  dom cdm 4696  Rel wrel 4701  cfv 5294  (class class class)co 5974  Basecbs 12998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-cnex 8058  ax-resscn 8059  ax-1re 8061  ax-addrcl 8064
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-sbc 3009  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-iota 5254  df-fun 5296  df-fn 5297  df-fv 5302  df-ov 5977  df-inn 9079  df-ndx 13001  df-slot 13002  df-base 13004
This theorem is referenced by:  psrelbas  14604  psradd  14608  psraddcl  14609  mplrcl  14623  mplbasss  14625  mpladd  14633
  Copyright terms: Public domain W3C validator