| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relelbasov | GIF version | ||
| Description: Utility theorem: reverse closure for any structure defined as a two-argument function. (Contributed by Mario Carneiro, 3-Oct-2015.) |
| Ref | Expression |
|---|---|
| elbasov.o | ⊢ Rel dom 𝑂 |
| relelbasov.r | ⊢ Rel 𝑂 |
| elbasov.s | ⊢ 𝑆 = (𝑋𝑂𝑌) |
| elbasov.b | ⊢ 𝐵 = (Base‘𝑆) |
| Ref | Expression |
|---|---|
| relelbasov | ⊢ (𝐴 ∈ 𝐵 → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elbasov.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
| 2 | 1 | basm 13060 | . 2 ⊢ (𝐴 ∈ 𝐵 → ∃𝑗 𝑗 ∈ 𝑆) |
| 3 | elbasov.o | . . . . 5 ⊢ Rel dom 𝑂 | |
| 4 | df-rel 4703 | . . . . 5 ⊢ (Rel dom 𝑂 ↔ dom 𝑂 ⊆ (V × V)) | |
| 5 | 3, 4 | mpbi 145 | . . . 4 ⊢ dom 𝑂 ⊆ (V × V) |
| 6 | relelbasov.r | . . . . 5 ⊢ Rel 𝑂 | |
| 7 | simpr 110 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝑗 ∈ 𝑆) → 𝑗 ∈ 𝑆) | |
| 8 | elbasov.s | . . . . . . 7 ⊢ 𝑆 = (𝑋𝑂𝑌) | |
| 9 | 7, 8 | eleqtrdi 2302 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝑗 ∈ 𝑆) → 𝑗 ∈ (𝑋𝑂𝑌)) |
| 10 | df-ov 5977 | . . . . . 6 ⊢ (𝑋𝑂𝑌) = (𝑂‘〈𝑋, 𝑌〉) | |
| 11 | 9, 10 | eleqtrdi 2302 | . . . . 5 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝑗 ∈ 𝑆) → 𝑗 ∈ (𝑂‘〈𝑋, 𝑌〉)) |
| 12 | relelfvdm 5635 | . . . . 5 ⊢ ((Rel 𝑂 ∧ 𝑗 ∈ (𝑂‘〈𝑋, 𝑌〉)) → 〈𝑋, 𝑌〉 ∈ dom 𝑂) | |
| 13 | 6, 11, 12 | sylancr 414 | . . . 4 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝑗 ∈ 𝑆) → 〈𝑋, 𝑌〉 ∈ dom 𝑂) |
| 14 | 5, 13 | sselid 3202 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝑗 ∈ 𝑆) → 〈𝑋, 𝑌〉 ∈ (V × V)) |
| 15 | opelxp 4726 | . . 3 ⊢ (〈𝑋, 𝑌〉 ∈ (V × V) ↔ (𝑋 ∈ V ∧ 𝑌 ∈ V)) | |
| 16 | 14, 15 | sylib 122 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝑗 ∈ 𝑆) → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
| 17 | 2, 16 | exlimddv 1925 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∈ wcel 2180 Vcvv 2779 ⊆ wss 3177 〈cop 3649 × cxp 4694 dom cdm 4696 Rel wrel 4701 ‘cfv 5294 (class class class)co 5974 Basecbs 12998 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-cnex 8058 ax-resscn 8059 ax-1re 8061 ax-addrcl 8064 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-sbc 3009 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-iota 5254 df-fun 5296 df-fn 5297 df-fv 5302 df-ov 5977 df-inn 9079 df-ndx 13001 df-slot 13002 df-base 13004 |
| This theorem is referenced by: psrelbas 14604 psradd 14608 psraddcl 14609 mplrcl 14623 mplbasss 14625 mpladd 14633 |
| Copyright terms: Public domain | W3C validator |