| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relelbasov | GIF version | ||
| Description: Utility theorem: reverse closure for any structure defined as a two-argument function. (Contributed by Mario Carneiro, 3-Oct-2015.) |
| Ref | Expression |
|---|---|
| elbasov.o | ⊢ Rel dom 𝑂 |
| relelbasov.r | ⊢ Rel 𝑂 |
| elbasov.s | ⊢ 𝑆 = (𝑋𝑂𝑌) |
| elbasov.b | ⊢ 𝐵 = (Base‘𝑆) |
| Ref | Expression |
|---|---|
| relelbasov | ⊢ (𝐴 ∈ 𝐵 → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elbasov.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
| 2 | 1 | basm 13102 | . 2 ⊢ (𝐴 ∈ 𝐵 → ∃𝑗 𝑗 ∈ 𝑆) |
| 3 | elbasov.o | . . . . 5 ⊢ Rel dom 𝑂 | |
| 4 | df-rel 4726 | . . . . 5 ⊢ (Rel dom 𝑂 ↔ dom 𝑂 ⊆ (V × V)) | |
| 5 | 3, 4 | mpbi 145 | . . . 4 ⊢ dom 𝑂 ⊆ (V × V) |
| 6 | relelbasov.r | . . . . 5 ⊢ Rel 𝑂 | |
| 7 | simpr 110 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝑗 ∈ 𝑆) → 𝑗 ∈ 𝑆) | |
| 8 | elbasov.s | . . . . . . 7 ⊢ 𝑆 = (𝑋𝑂𝑌) | |
| 9 | 7, 8 | eleqtrdi 2322 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝑗 ∈ 𝑆) → 𝑗 ∈ (𝑋𝑂𝑌)) |
| 10 | df-ov 6010 | . . . . . 6 ⊢ (𝑋𝑂𝑌) = (𝑂‘〈𝑋, 𝑌〉) | |
| 11 | 9, 10 | eleqtrdi 2322 | . . . . 5 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝑗 ∈ 𝑆) → 𝑗 ∈ (𝑂‘〈𝑋, 𝑌〉)) |
| 12 | relelfvdm 5661 | . . . . 5 ⊢ ((Rel 𝑂 ∧ 𝑗 ∈ (𝑂‘〈𝑋, 𝑌〉)) → 〈𝑋, 𝑌〉 ∈ dom 𝑂) | |
| 13 | 6, 11, 12 | sylancr 414 | . . . 4 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝑗 ∈ 𝑆) → 〈𝑋, 𝑌〉 ∈ dom 𝑂) |
| 14 | 5, 13 | sselid 3222 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝑗 ∈ 𝑆) → 〈𝑋, 𝑌〉 ∈ (V × V)) |
| 15 | opelxp 4749 | . . 3 ⊢ (〈𝑋, 𝑌〉 ∈ (V × V) ↔ (𝑋 ∈ V ∧ 𝑌 ∈ V)) | |
| 16 | 14, 15 | sylib 122 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝑗 ∈ 𝑆) → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
| 17 | 2, 16 | exlimddv 1945 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ⊆ wss 3197 〈cop 3669 × cxp 4717 dom cdm 4719 Rel wrel 4724 ‘cfv 5318 (class class class)co 6007 Basecbs 13040 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8098 ax-resscn 8099 ax-1re 8101 ax-addrcl 8104 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-ov 6010 df-inn 9119 df-ndx 13043 df-slot 13044 df-base 13046 |
| This theorem is referenced by: psrelbas 14647 psradd 14651 psraddcl 14652 mplrcl 14666 mplbasss 14668 mpladd 14676 |
| Copyright terms: Public domain | W3C validator |