![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > relelbasov | GIF version |
Description: Utility theorem: reverse closure for any structure defined as a two-argument function. (Contributed by Mario Carneiro, 3-Oct-2015.) |
Ref | Expression |
---|---|
elbasov.o | ⊢ Rel dom 𝑂 |
relelbasov.r | ⊢ Rel 𝑂 |
elbasov.s | ⊢ 𝑆 = (𝑋𝑂𝑌) |
elbasov.b | ⊢ 𝐵 = (Base‘𝑆) |
Ref | Expression |
---|---|
relelbasov | ⊢ (𝐴 ∈ 𝐵 → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elbasov.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
2 | 1 | basm 12682 | . 2 ⊢ (𝐴 ∈ 𝐵 → ∃𝑗 𝑗 ∈ 𝑆) |
3 | elbasov.o | . . . . 5 ⊢ Rel dom 𝑂 | |
4 | df-rel 4667 | . . . . 5 ⊢ (Rel dom 𝑂 ↔ dom 𝑂 ⊆ (V × V)) | |
5 | 3, 4 | mpbi 145 | . . . 4 ⊢ dom 𝑂 ⊆ (V × V) |
6 | relelbasov.r | . . . . 5 ⊢ Rel 𝑂 | |
7 | simpr 110 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝑗 ∈ 𝑆) → 𝑗 ∈ 𝑆) | |
8 | elbasov.s | . . . . . . 7 ⊢ 𝑆 = (𝑋𝑂𝑌) | |
9 | 7, 8 | eleqtrdi 2286 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝑗 ∈ 𝑆) → 𝑗 ∈ (𝑋𝑂𝑌)) |
10 | df-ov 5922 | . . . . . 6 ⊢ (𝑋𝑂𝑌) = (𝑂‘〈𝑋, 𝑌〉) | |
11 | 9, 10 | eleqtrdi 2286 | . . . . 5 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝑗 ∈ 𝑆) → 𝑗 ∈ (𝑂‘〈𝑋, 𝑌〉)) |
12 | relelfvdm 5587 | . . . . 5 ⊢ ((Rel 𝑂 ∧ 𝑗 ∈ (𝑂‘〈𝑋, 𝑌〉)) → 〈𝑋, 𝑌〉 ∈ dom 𝑂) | |
13 | 6, 11, 12 | sylancr 414 | . . . 4 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝑗 ∈ 𝑆) → 〈𝑋, 𝑌〉 ∈ dom 𝑂) |
14 | 5, 13 | sselid 3178 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝑗 ∈ 𝑆) → 〈𝑋, 𝑌〉 ∈ (V × V)) |
15 | opelxp 4690 | . . 3 ⊢ (〈𝑋, 𝑌〉 ∈ (V × V) ↔ (𝑋 ∈ V ∧ 𝑌 ∈ V)) | |
16 | 14, 15 | sylib 122 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝑗 ∈ 𝑆) → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
17 | 2, 16 | exlimddv 1910 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ⊆ wss 3154 〈cop 3622 × cxp 4658 dom cdm 4660 Rel wrel 4665 ‘cfv 5255 (class class class)co 5919 Basecbs 12621 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-iota 5216 df-fun 5257 df-fn 5258 df-fv 5263 df-ov 5922 df-inn 8985 df-ndx 12624 df-slot 12625 df-base 12627 |
This theorem is referenced by: psrelbas 14171 psradd 14174 psraddcl 14175 |
Copyright terms: Public domain | W3C validator |