| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relelbasov | GIF version | ||
| Description: Utility theorem: reverse closure for any structure defined as a two-argument function. (Contributed by Mario Carneiro, 3-Oct-2015.) |
| Ref | Expression |
|---|---|
| elbasov.o | ⊢ Rel dom 𝑂 |
| relelbasov.r | ⊢ Rel 𝑂 |
| elbasov.s | ⊢ 𝑆 = (𝑋𝑂𝑌) |
| elbasov.b | ⊢ 𝐵 = (Base‘𝑆) |
| Ref | Expression |
|---|---|
| relelbasov | ⊢ (𝐴 ∈ 𝐵 → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elbasov.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
| 2 | 1 | basm 12764 | . 2 ⊢ (𝐴 ∈ 𝐵 → ∃𝑗 𝑗 ∈ 𝑆) |
| 3 | elbasov.o | . . . . 5 ⊢ Rel dom 𝑂 | |
| 4 | df-rel 4671 | . . . . 5 ⊢ (Rel dom 𝑂 ↔ dom 𝑂 ⊆ (V × V)) | |
| 5 | 3, 4 | mpbi 145 | . . . 4 ⊢ dom 𝑂 ⊆ (V × V) |
| 6 | relelbasov.r | . . . . 5 ⊢ Rel 𝑂 | |
| 7 | simpr 110 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝑗 ∈ 𝑆) → 𝑗 ∈ 𝑆) | |
| 8 | elbasov.s | . . . . . . 7 ⊢ 𝑆 = (𝑋𝑂𝑌) | |
| 9 | 7, 8 | eleqtrdi 2289 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝑗 ∈ 𝑆) → 𝑗 ∈ (𝑋𝑂𝑌)) |
| 10 | df-ov 5928 | . . . . . 6 ⊢ (𝑋𝑂𝑌) = (𝑂‘〈𝑋, 𝑌〉) | |
| 11 | 9, 10 | eleqtrdi 2289 | . . . . 5 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝑗 ∈ 𝑆) → 𝑗 ∈ (𝑂‘〈𝑋, 𝑌〉)) |
| 12 | relelfvdm 5593 | . . . . 5 ⊢ ((Rel 𝑂 ∧ 𝑗 ∈ (𝑂‘〈𝑋, 𝑌〉)) → 〈𝑋, 𝑌〉 ∈ dom 𝑂) | |
| 13 | 6, 11, 12 | sylancr 414 | . . . 4 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝑗 ∈ 𝑆) → 〈𝑋, 𝑌〉 ∈ dom 𝑂) |
| 14 | 5, 13 | sselid 3182 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝑗 ∈ 𝑆) → 〈𝑋, 𝑌〉 ∈ (V × V)) |
| 15 | opelxp 4694 | . . 3 ⊢ (〈𝑋, 𝑌〉 ∈ (V × V) ↔ (𝑋 ∈ V ∧ 𝑌 ∈ V)) | |
| 16 | 14, 15 | sylib 122 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝑗 ∈ 𝑆) → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
| 17 | 2, 16 | exlimddv 1913 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ⊆ wss 3157 〈cop 3626 × cxp 4662 dom cdm 4664 Rel wrel 4669 ‘cfv 5259 (class class class)co 5925 Basecbs 12703 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-ov 5928 df-inn 9008 df-ndx 12706 df-slot 12707 df-base 12709 |
| This theorem is referenced by: psrelbas 14304 psradd 14307 psraddcl 14308 |
| Copyright terms: Public domain | W3C validator |