ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relelbasov GIF version

Theorem relelbasov 12680
Description: Utility theorem: reverse closure for any structure defined as a two-argument function. (Contributed by Mario Carneiro, 3-Oct-2015.)
Hypotheses
Ref Expression
elbasov.o Rel dom 𝑂
relelbasov.r Rel 𝑂
elbasov.s 𝑆 = (𝑋𝑂𝑌)
elbasov.b 𝐵 = (Base‘𝑆)
Assertion
Ref Expression
relelbasov (𝐴𝐵 → (𝑋 ∈ V ∧ 𝑌 ∈ V))

Proof of Theorem relelbasov
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 elbasov.b . . 3 𝐵 = (Base‘𝑆)
21basm 12679 . 2 (𝐴𝐵 → ∃𝑗 𝑗𝑆)
3 elbasov.o . . . . 5 Rel dom 𝑂
4 df-rel 4666 . . . . 5 (Rel dom 𝑂 ↔ dom 𝑂 ⊆ (V × V))
53, 4mpbi 145 . . . 4 dom 𝑂 ⊆ (V × V)
6 relelbasov.r . . . . 5 Rel 𝑂
7 simpr 110 . . . . . . 7 ((𝐴𝐵𝑗𝑆) → 𝑗𝑆)
8 elbasov.s . . . . . . 7 𝑆 = (𝑋𝑂𝑌)
97, 8eleqtrdi 2286 . . . . . 6 ((𝐴𝐵𝑗𝑆) → 𝑗 ∈ (𝑋𝑂𝑌))
10 df-ov 5921 . . . . . 6 (𝑋𝑂𝑌) = (𝑂‘⟨𝑋, 𝑌⟩)
119, 10eleqtrdi 2286 . . . . 5 ((𝐴𝐵𝑗𝑆) → 𝑗 ∈ (𝑂‘⟨𝑋, 𝑌⟩))
12 relelfvdm 5586 . . . . 5 ((Rel 𝑂𝑗 ∈ (𝑂‘⟨𝑋, 𝑌⟩)) → ⟨𝑋, 𝑌⟩ ∈ dom 𝑂)
136, 11, 12sylancr 414 . . . 4 ((𝐴𝐵𝑗𝑆) → ⟨𝑋, 𝑌⟩ ∈ dom 𝑂)
145, 13sselid 3177 . . 3 ((𝐴𝐵𝑗𝑆) → ⟨𝑋, 𝑌⟩ ∈ (V × V))
15 opelxp 4689 . . 3 (⟨𝑋, 𝑌⟩ ∈ (V × V) ↔ (𝑋 ∈ V ∧ 𝑌 ∈ V))
1614, 15sylib 122 . 2 ((𝐴𝐵𝑗𝑆) → (𝑋 ∈ V ∧ 𝑌 ∈ V))
172, 16exlimddv 1910 1 (𝐴𝐵 → (𝑋 ∈ V ∧ 𝑌 ∈ V))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  Vcvv 2760  wss 3153  cop 3621   × cxp 4657  dom cdm 4659  Rel wrel 4664  cfv 5254  (class class class)co 5918  Basecbs 12618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-ov 5921  df-inn 8983  df-ndx 12621  df-slot 12622  df-base 12624
This theorem is referenced by:  psrelbas  14160  psradd  14163  psraddcl  14164
  Copyright terms: Public domain W3C validator