ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloc2 Unicode version

Theorem prarloc2 7403
Description: A Dedekind cut is arithmetically located. This is a variation of prarloc 7402 which only constructs one (named) point and is therefore often easier to work with. It states that given a tolerance  P, there are elements of the lower and upper cut which are exactly that tolerance from each other. (Contributed by Jim Kingdon, 26-Dec-2019.)
Assertion
Ref Expression
prarloc2  |-  ( (
<. L ,  U >.  e. 
P.  /\  P  e.  Q. )  ->  E. a  e.  L  ( a  +Q  P )  e.  U
)
Distinct variable groups:    L, a    P, a    U, a

Proof of Theorem prarloc2
Dummy variable  b is distinct from all other variables.
StepHypRef Expression
1 prarloc 7402 . 2  |-  ( (
<. L ,  U >.  e. 
P.  /\  P  e.  Q. )  ->  E. a  e.  L  E. b  e.  U  b  <Q  ( a  +Q  P ) )
2 prcunqu 7384 . . . . 5  |-  ( (
<. L ,  U >.  e. 
P.  /\  b  e.  U )  ->  (
b  <Q  ( a  +Q  P )  ->  (
a  +Q  P )  e.  U ) )
32rexlimdva 2571 . . . 4  |-  ( <. L ,  U >.  e. 
P.  ->  ( E. b  e.  U  b  <Q  ( a  +Q  P )  ->  ( a  +Q  P )  e.  U
) )
43reximdv 2555 . . 3  |-  ( <. L ,  U >.  e. 
P.  ->  ( E. a  e.  L  E. b  e.  U  b  <Q  ( a  +Q  P )  ->  E. a  e.  L  ( a  +Q  P
)  e.  U ) )
54adantr 274 . 2  |-  ( (
<. L ,  U >.  e. 
P.  /\  P  e.  Q. )  ->  ( E. a  e.  L  E. b  e.  U  b  <Q  ( a  +Q  P
)  ->  E. a  e.  L  ( a  +Q  P )  e.  U
) )
61, 5mpd 13 1  |-  ( (
<. L ,  U >.  e. 
P.  /\  P  e.  Q. )  ->  E. a  e.  L  ( a  +Q  P )  e.  U
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2125   E.wrex 2433   <.cop 3559   class class class wbr 3961  (class class class)co 5814   Q.cnq 7179    +Q cplq 7181    <Q cltq 7184   P.cnp 7190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-ral 2437  df-rex 2438  df-reu 2439  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-eprel 4244  df-id 4248  df-po 4251  df-iso 4252  df-iord 4321  df-on 4323  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-recs 6242  df-irdg 6307  df-1o 6353  df-2o 6354  df-oadd 6357  df-omul 6358  df-er 6469  df-ec 6471  df-qs 6475  df-ni 7203  df-pli 7204  df-mi 7205  df-lti 7206  df-plpq 7243  df-mpq 7244  df-enq 7246  df-nqqs 7247  df-plqqs 7248  df-mqqs 7249  df-1nqqs 7250  df-rq 7251  df-ltnqqs 7252  df-enq0 7323  df-nq0 7324  df-0nq0 7325  df-plq0 7326  df-mq0 7327  df-inp 7365
This theorem is referenced by:  addcanprleml  7513  addcanprlemu  7514  aptiprleml  7538  aptiprlemu  7539
  Copyright terms: Public domain W3C validator