ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divclap Unicode version

Theorem divclap 8574
Description: Closure law for division. (Contributed by Jim Kingdon, 22-Feb-2020.)
Assertion
Ref Expression
divclap  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A  /  B )  e.  CC )

Proof of Theorem divclap
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 divvalap 8570 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A  /  B )  =  ( iota_ x  e.  CC  ( B  x.  x
)  =  A ) )
2 receuap 8566 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  E! x  e.  CC  ( B  x.  x )  =  A )
3 riotacl 5812 . . 3  |-  ( E! x  e.  CC  ( B  x.  x )  =  A  ->  ( iota_ x  e.  CC  ( B  x.  x )  =  A )  e.  CC )
42, 3syl 14 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( iota_ x  e.  CC  ( B  x.  x )  =  A )  e.  CC )
51, 4eqeltrd 2243 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A  /  B )  e.  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 968    = wceq 1343    e. wcel 2136   E!wreu 2446   class class class wbr 3982   iota_crio 5797  (class class class)co 5842   CCcc 7751   0cc0 7753    x. cmul 7758   # cap 8479    / cdiv 8568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569
This theorem is referenced by:  recclap  8575  divcanap2  8576  divcanap1  8577  divap0b  8579  div23ap  8587  div12ap  8590  divmulasscomap  8592  div11ap  8596  divsubdirap  8604  divmuldivap  8608  divdivdivap  8609  divcanap5  8610  divmuleqap  8613  divcanap6  8615  divdiv32ap  8616  dmdcanap  8618  ddcanap  8622  divsubdivap  8624  div2negap  8631  divclapzi  8643  divclapi  8650  divclapd  8686  nndivtr  8899  halfcl  9083  sqdivap  10519  cjdivap  10851  absdivap  11012  sinf  11645  efi4p  11658  dvrecap  13317
  Copyright terms: Public domain W3C validator