| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > divclap | Unicode version | ||
| Description: Closure law for division. (Contributed by Jim Kingdon, 22-Feb-2020.) |
| Ref | Expression |
|---|---|
| divclap |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divvalap 8777 |
. 2
| |
| 2 | receuap 8772 |
. . 3
| |
| 3 | riotacl 5932 |
. . 3
| |
| 4 | 2, 3 | syl 14 |
. 2
|
| 5 | 1, 4 | eqeltrd 2283 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-mulrcl 8054 ax-addcom 8055 ax-mulcom 8056 ax-addass 8057 ax-mulass 8058 ax-distr 8059 ax-i2m1 8060 ax-0lt1 8061 ax-1rid 8062 ax-0id 8063 ax-rnegex 8064 ax-precex 8065 ax-cnre 8066 ax-pre-ltirr 8067 ax-pre-ltwlin 8068 ax-pre-lttrn 8069 ax-pre-apti 8070 ax-pre-ltadd 8071 ax-pre-mulgt0 8072 ax-pre-mulext 8073 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-opab 4117 df-id 4353 df-po 4356 df-iso 4357 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-iota 5246 df-fun 5287 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-sub 8275 df-neg 8276 df-reap 8678 df-ap 8685 df-div 8776 |
| This theorem is referenced by: recclap 8782 divcanap2 8783 divcanap1 8784 divap0b 8786 div23ap 8794 div12ap 8797 divmulasscomap 8799 div11ap 8803 divsubdirap 8811 divmuldivap 8815 divdivdivap 8816 divcanap5 8817 divmuleqap 8820 divcanap6 8822 divdiv32ap 8823 dmdcanap 8825 ddcanap 8829 divsubdivap 8831 div2negap 8838 divclapzi 8850 divclapi 8857 divclapd 8893 nndivtr 9108 halfcl 9293 sqdivap 10780 cjdivap 11305 absdivap 11466 sinf 12100 efi4p 12113 dvrecap 15270 |
| Copyright terms: Public domain | W3C validator |