ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divclap Unicode version

Theorem divclap 8750
Description: Closure law for division. (Contributed by Jim Kingdon, 22-Feb-2020.)
Assertion
Ref Expression
divclap  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A  /  B )  e.  CC )

Proof of Theorem divclap
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 divvalap 8746 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A  /  B )  =  ( iota_ x  e.  CC  ( B  x.  x
)  =  A ) )
2 receuap 8741 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  E! x  e.  CC  ( B  x.  x )  =  A )
3 riotacl 5913 . . 3  |-  ( E! x  e.  CC  ( B  x.  x )  =  A  ->  ( iota_ x  e.  CC  ( B  x.  x )  =  A )  e.  CC )
42, 3syl 14 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( iota_ x  e.  CC  ( B  x.  x )  =  A )  e.  CC )
51, 4eqeltrd 2281 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A  /  B )  e.  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980    = wceq 1372    e. wcel 2175   E!wreu 2485   class class class wbr 4043   iota_crio 5897  (class class class)co 5943   CCcc 7922   0cc0 7924    x. cmul 7929   # cap 8653    / cdiv 8744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4339  df-po 4342  df-iso 4343  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-iota 5231  df-fun 5272  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745
This theorem is referenced by:  recclap  8751  divcanap2  8752  divcanap1  8753  divap0b  8755  div23ap  8763  div12ap  8766  divmulasscomap  8768  div11ap  8772  divsubdirap  8780  divmuldivap  8784  divdivdivap  8785  divcanap5  8786  divmuleqap  8789  divcanap6  8791  divdiv32ap  8792  dmdcanap  8794  ddcanap  8798  divsubdivap  8800  div2negap  8807  divclapzi  8819  divclapi  8826  divclapd  8862  nndivtr  9077  halfcl  9262  sqdivap  10746  cjdivap  11162  absdivap  11323  sinf  11957  efi4p  11970  dvrecap  15127
  Copyright terms: Public domain W3C validator