ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oddpwdc Unicode version

Theorem oddpwdc 12342
Description: The function  F that decomposes a number into its "odd" and "even" parts, which is to say the largest power of two and largest odd divisor of a number, is a bijection from pairs of a nonnegative integer and an odd number to positive integers. (Contributed by Thierry Arnoux, 15-Aug-2017.)
Hypotheses
Ref Expression
oddpwdc.j  |-  J  =  { z  e.  NN  |  -.  2  ||  z }
oddpwdc.f  |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x
) )
Assertion
Ref Expression
oddpwdc  |-  F :
( J  X.  NN0 )
-1-1-onto-> NN
Distinct variable groups:    x, y, z   
x, J, y
Allowed substitution hints:    F( x, y, z)    J( z)

Proof of Theorem oddpwdc
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 oddpwdc.f . . 3  |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x
) )
2 2cnd 9063 . . . . . 6  |-  ( ( x  e.  J  /\  y  e.  NN0 )  -> 
2  e.  CC )
3 simpr 110 . . . . . 6  |-  ( ( x  e.  J  /\  y  e.  NN0 )  -> 
y  e.  NN0 )
42, 3expcld 10765 . . . . 5  |-  ( ( x  e.  J  /\  y  e.  NN0 )  -> 
( 2 ^ y
)  e.  CC )
5 breq2 4037 . . . . . . . . . 10  |-  ( z  =  x  ->  (
2  ||  z  <->  2  ||  x ) )
65notbid 668 . . . . . . . . 9  |-  ( z  =  x  ->  ( -.  2  ||  z  <->  -.  2  ||  x ) )
7 oddpwdc.j . . . . . . . . 9  |-  J  =  { z  e.  NN  |  -.  2  ||  z }
86, 7elrab2 2923 . . . . . . . 8  |-  ( x  e.  J  <->  ( x  e.  NN  /\  -.  2  ||  x ) )
98simplbi 274 . . . . . . 7  |-  ( x  e.  J  ->  x  e.  NN )
109adantr 276 . . . . . 6  |-  ( ( x  e.  J  /\  y  e.  NN0 )  ->  x  e.  NN )
1110nncnd 9004 . . . . 5  |-  ( ( x  e.  J  /\  y  e.  NN0 )  ->  x  e.  CC )
124, 11mulcld 8047 . . . 4  |-  ( ( x  e.  J  /\  y  e.  NN0 )  -> 
( ( 2 ^ y )  x.  x
)  e.  CC )
1312adantl 277 . . 3  |-  ( ( T.  /\  ( x  e.  J  /\  y  e.  NN0 ) )  -> 
( ( 2 ^ y )  x.  x
)  e.  CC )
14 nnnn0 9256 . . . . . 6  |-  ( a  e.  NN  ->  a  e.  NN0 )
15 2nn 9152 . . . . . . 7  |-  2  e.  NN
16 pw2dvdseu 12336 . . . . . . . 8  |-  ( a  e.  NN  ->  E! z  e.  NN0  ( ( 2 ^ z ) 
||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a ) )
17 riotacl 5892 . . . . . . . 8  |-  ( E! z  e.  NN0  (
( 2 ^ z
)  ||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a )  ->  ( iota_ z  e. 
NN0  ( ( 2 ^ z )  ||  a  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  a ) )  e. 
NN0 )
1816, 17syl 14 . . . . . . 7  |-  ( a  e.  NN  ->  ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a ) )  e.  NN0 )
19 nnexpcl 10644 . . . . . . 7  |-  ( ( 2  e.  NN  /\  ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  a  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  a
) )  e.  NN0 )  ->  ( 2 ^ ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  a  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  a
) ) )  e.  NN )
2015, 18, 19sylancr 414 . . . . . 6  |-  ( a  e.  NN  ->  (
2 ^ ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a ) ) )  e.  NN )
21 nn0nndivcl 9311 . . . . . 6  |-  ( ( a  e.  NN0  /\  ( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a ) ) )  e.  NN )  ->  ( a  / 
( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a ) ) ) )  e.  RR )
2214, 20, 21syl2anc 411 . . . . 5  |-  ( a  e.  NN  ->  (
a  /  ( 2 ^ ( iota_ z  e. 
NN0  ( ( 2 ^ z )  ||  a  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  a ) ) ) )  e.  RR )
2322, 18jca 306 . . . 4  |-  ( a  e.  NN  ->  (
( a  /  (
2 ^ ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a ) ) ) )  e.  RR  /\  ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a ) )  e.  NN0 )
)
2423adantl 277 . . 3  |-  ( ( T.  /\  a  e.  NN )  ->  (
( a  /  (
2 ^ ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a ) ) ) )  e.  RR  /\  ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a ) )  e.  NN0 )
)
258anbi1i 458 . . . . . 6  |-  ( ( x  e.  J  /\  y  e.  NN0 )  <->  ( (
x  e.  NN  /\  -.  2  ||  x )  /\  y  e.  NN0 ) )
2625anbi1i 458 . . . . 5  |-  ( ( ( x  e.  J  /\  y  e.  NN0 )  /\  a  =  ( ( 2 ^ y
)  x.  x ) )  <->  ( ( ( x  e.  NN  /\  -.  2  ||  x )  /\  y  e.  NN0 )  /\  a  =  ( ( 2 ^ y
)  x.  x ) ) )
27 oddpwdclemdc 12341 . . . . 5  |-  ( ( ( ( x  e.  NN  /\  -.  2  ||  x )  /\  y  e.  NN0 )  /\  a  =  ( ( 2 ^ y )  x.  x ) )  <->  ( a  e.  NN  /\  ( x  =  ( a  / 
( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a ) ) ) )  /\  y  =  ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a ) ) ) ) )
2826, 27bitri 184 . . . 4  |-  ( ( ( x  e.  J  /\  y  e.  NN0 )  /\  a  =  ( ( 2 ^ y
)  x.  x ) )  <->  ( a  e.  NN  /\  ( x  =  ( a  / 
( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a ) ) ) )  /\  y  =  ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a ) ) ) ) )
2928a1i 9 . . 3  |-  ( T. 
->  ( ( ( x  e.  J  /\  y  e.  NN0 )  /\  a  =  ( ( 2 ^ y )  x.  x ) )  <->  ( a  e.  NN  /\  ( x  =  ( a  / 
( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a ) ) ) )  /\  y  =  ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a ) ) ) ) ) )
301, 13, 24, 29f1od2 6293 . 2  |-  ( T. 
->  F : ( J  X.  NN0 ) -1-1-onto-> NN )
3130mptru 1373 1  |-  F :
( J  X.  NN0 )
-1-1-onto-> NN
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    = wceq 1364   T. wtru 1365    e. wcel 2167   E!wreu 2477   {crab 2479   class class class wbr 4033    X. cxp 4661   -1-1-onto->wf1o 5257   iota_crio 5876  (class class class)co 5922    e. cmpo 5924   CCcc 7877   RRcr 7878   1c1 7880    + caddc 7882    x. cmul 7884    / cdiv 8699   NNcn 8990   2c2 9041   NN0cn0 9249   ^cexp 10630    || cdvds 11952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-dvds 11953
This theorem is referenced by:  sqpweven  12343  2sqpwodd  12344  xpnnen  12611
  Copyright terms: Public domain W3C validator