ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oddpwdc Unicode version

Theorem oddpwdc 12691
Description: The function  F that decomposes a number into its "odd" and "even" parts, which is to say the largest power of two and largest odd divisor of a number, is a bijection from pairs of a nonnegative integer and an odd number to positive integers. (Contributed by Thierry Arnoux, 15-Aug-2017.)
Hypotheses
Ref Expression
oddpwdc.j  |-  J  =  { z  e.  NN  |  -.  2  ||  z }
oddpwdc.f  |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x
) )
Assertion
Ref Expression
oddpwdc  |-  F :
( J  X.  NN0 )
-1-1-onto-> NN
Distinct variable groups:    x, y, z   
x, J, y
Allowed substitution hints:    F( x, y, z)    J( z)

Proof of Theorem oddpwdc
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 oddpwdc.f . . 3  |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x
) )
2 2cnd 9179 . . . . . 6  |-  ( ( x  e.  J  /\  y  e.  NN0 )  -> 
2  e.  CC )
3 simpr 110 . . . . . 6  |-  ( ( x  e.  J  /\  y  e.  NN0 )  -> 
y  e.  NN0 )
42, 3expcld 10890 . . . . 5  |-  ( ( x  e.  J  /\  y  e.  NN0 )  -> 
( 2 ^ y
)  e.  CC )
5 breq2 4086 . . . . . . . . . 10  |-  ( z  =  x  ->  (
2  ||  z  <->  2  ||  x ) )
65notbid 671 . . . . . . . . 9  |-  ( z  =  x  ->  ( -.  2  ||  z  <->  -.  2  ||  x ) )
7 oddpwdc.j . . . . . . . . 9  |-  J  =  { z  e.  NN  |  -.  2  ||  z }
86, 7elrab2 2962 . . . . . . . 8  |-  ( x  e.  J  <->  ( x  e.  NN  /\  -.  2  ||  x ) )
98simplbi 274 . . . . . . 7  |-  ( x  e.  J  ->  x  e.  NN )
109adantr 276 . . . . . 6  |-  ( ( x  e.  J  /\  y  e.  NN0 )  ->  x  e.  NN )
1110nncnd 9120 . . . . 5  |-  ( ( x  e.  J  /\  y  e.  NN0 )  ->  x  e.  CC )
124, 11mulcld 8163 . . . 4  |-  ( ( x  e.  J  /\  y  e.  NN0 )  -> 
( ( 2 ^ y )  x.  x
)  e.  CC )
1312adantl 277 . . 3  |-  ( ( T.  /\  ( x  e.  J  /\  y  e.  NN0 ) )  -> 
( ( 2 ^ y )  x.  x
)  e.  CC )
14 nnnn0 9372 . . . . . 6  |-  ( a  e.  NN  ->  a  e.  NN0 )
15 2nn 9268 . . . . . . 7  |-  2  e.  NN
16 pw2dvdseu 12685 . . . . . . . 8  |-  ( a  e.  NN  ->  E! z  e.  NN0  ( ( 2 ^ z ) 
||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a ) )
17 riotacl 5969 . . . . . . . 8  |-  ( E! z  e.  NN0  (
( 2 ^ z
)  ||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a )  ->  ( iota_ z  e. 
NN0  ( ( 2 ^ z )  ||  a  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  a ) )  e. 
NN0 )
1816, 17syl 14 . . . . . . 7  |-  ( a  e.  NN  ->  ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a ) )  e.  NN0 )
19 nnexpcl 10769 . . . . . . 7  |-  ( ( 2  e.  NN  /\  ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  a  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  a
) )  e.  NN0 )  ->  ( 2 ^ ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  a  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  a
) ) )  e.  NN )
2015, 18, 19sylancr 414 . . . . . 6  |-  ( a  e.  NN  ->  (
2 ^ ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a ) ) )  e.  NN )
21 nn0nndivcl 9427 . . . . . 6  |-  ( ( a  e.  NN0  /\  ( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a ) ) )  e.  NN )  ->  ( a  / 
( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a ) ) ) )  e.  RR )
2214, 20, 21syl2anc 411 . . . . 5  |-  ( a  e.  NN  ->  (
a  /  ( 2 ^ ( iota_ z  e. 
NN0  ( ( 2 ^ z )  ||  a  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  a ) ) ) )  e.  RR )
2322, 18jca 306 . . . 4  |-  ( a  e.  NN  ->  (
( a  /  (
2 ^ ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a ) ) ) )  e.  RR  /\  ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a ) )  e.  NN0 )
)
2423adantl 277 . . 3  |-  ( ( T.  /\  a  e.  NN )  ->  (
( a  /  (
2 ^ ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a ) ) ) )  e.  RR  /\  ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a ) )  e.  NN0 )
)
258anbi1i 458 . . . . . 6  |-  ( ( x  e.  J  /\  y  e.  NN0 )  <->  ( (
x  e.  NN  /\  -.  2  ||  x )  /\  y  e.  NN0 ) )
2625anbi1i 458 . . . . 5  |-  ( ( ( x  e.  J  /\  y  e.  NN0 )  /\  a  =  ( ( 2 ^ y
)  x.  x ) )  <->  ( ( ( x  e.  NN  /\  -.  2  ||  x )  /\  y  e.  NN0 )  /\  a  =  ( ( 2 ^ y
)  x.  x ) ) )
27 oddpwdclemdc 12690 . . . . 5  |-  ( ( ( ( x  e.  NN  /\  -.  2  ||  x )  /\  y  e.  NN0 )  /\  a  =  ( ( 2 ^ y )  x.  x ) )  <->  ( a  e.  NN  /\  ( x  =  ( a  / 
( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a ) ) ) )  /\  y  =  ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a ) ) ) ) )
2826, 27bitri 184 . . . 4  |-  ( ( ( x  e.  J  /\  y  e.  NN0 )  /\  a  =  ( ( 2 ^ y
)  x.  x ) )  <->  ( a  e.  NN  /\  ( x  =  ( a  / 
( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a ) ) ) )  /\  y  =  ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a ) ) ) ) )
2928a1i 9 . . 3  |-  ( T. 
->  ( ( ( x  e.  J  /\  y  e.  NN0 )  /\  a  =  ( ( 2 ^ y )  x.  x ) )  <->  ( a  e.  NN  /\  ( x  =  ( a  / 
( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a ) ) ) )  /\  y  =  ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a ) ) ) ) ) )
301, 13, 24, 29f1od2 6379 . 2  |-  ( T. 
->  F : ( J  X.  NN0 ) -1-1-onto-> NN )
3130mptru 1404 1  |-  F :
( J  X.  NN0 )
-1-1-onto-> NN
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    = wceq 1395   T. wtru 1396    e. wcel 2200   E!wreu 2510   {crab 2512   class class class wbr 4082    X. cxp 4716   -1-1-onto->wf1o 5316   iota_crio 5952  (class class class)co 6000    e. cmpo 6002   CCcc 7993   RRcr 7994   1c1 7996    + caddc 7998    x. cmul 8000    / cdiv 8815   NNcn 9106   2c2 9157   NN0cn0 9365   ^cexp 10755    || cdvds 12293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fl 10485  df-mod 10540  df-seqfrec 10665  df-exp 10756  df-dvds 12294
This theorem is referenced by:  sqpweven  12692  2sqpwodd  12693  xpnnen  12960
  Copyright terms: Public domain W3C validator