ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oddpwdc Unicode version

Theorem oddpwdc 12128
Description: The function  F that decomposes a number into its "odd" and "even" parts, which is to say the largest power of two and largest odd divisor of a number, is a bijection from pairs of a nonnegative integer and an odd number to positive integers. (Contributed by Thierry Arnoux, 15-Aug-2017.)
Hypotheses
Ref Expression
oddpwdc.j  |-  J  =  { z  e.  NN  |  -.  2  ||  z }
oddpwdc.f  |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x
) )
Assertion
Ref Expression
oddpwdc  |-  F :
( J  X.  NN0 )
-1-1-onto-> NN
Distinct variable groups:    x, y, z   
x, J, y
Allowed substitution hints:    F( x, y, z)    J( z)

Proof of Theorem oddpwdc
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 oddpwdc.f . . 3  |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x
) )
2 2cnd 8951 . . . . . 6  |-  ( ( x  e.  J  /\  y  e.  NN0 )  -> 
2  e.  CC )
3 simpr 109 . . . . . 6  |-  ( ( x  e.  J  /\  y  e.  NN0 )  -> 
y  e.  NN0 )
42, 3expcld 10609 . . . . 5  |-  ( ( x  e.  J  /\  y  e.  NN0 )  -> 
( 2 ^ y
)  e.  CC )
5 breq2 3993 . . . . . . . . . 10  |-  ( z  =  x  ->  (
2  ||  z  <->  2  ||  x ) )
65notbid 662 . . . . . . . . 9  |-  ( z  =  x  ->  ( -.  2  ||  z  <->  -.  2  ||  x ) )
7 oddpwdc.j . . . . . . . . 9  |-  J  =  { z  e.  NN  |  -.  2  ||  z }
86, 7elrab2 2889 . . . . . . . 8  |-  ( x  e.  J  <->  ( x  e.  NN  /\  -.  2  ||  x ) )
98simplbi 272 . . . . . . 7  |-  ( x  e.  J  ->  x  e.  NN )
109adantr 274 . . . . . 6  |-  ( ( x  e.  J  /\  y  e.  NN0 )  ->  x  e.  NN )
1110nncnd 8892 . . . . 5  |-  ( ( x  e.  J  /\  y  e.  NN0 )  ->  x  e.  CC )
124, 11mulcld 7940 . . . 4  |-  ( ( x  e.  J  /\  y  e.  NN0 )  -> 
( ( 2 ^ y )  x.  x
)  e.  CC )
1312adantl 275 . . 3  |-  ( ( T.  /\  ( x  e.  J  /\  y  e.  NN0 ) )  -> 
( ( 2 ^ y )  x.  x
)  e.  CC )
14 nnnn0 9142 . . . . . 6  |-  ( a  e.  NN  ->  a  e.  NN0 )
15 2nn 9039 . . . . . . 7  |-  2  e.  NN
16 pw2dvdseu 12122 . . . . . . . 8  |-  ( a  e.  NN  ->  E! z  e.  NN0  ( ( 2 ^ z ) 
||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a ) )
17 riotacl 5823 . . . . . . . 8  |-  ( E! z  e.  NN0  (
( 2 ^ z
)  ||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a )  ->  ( iota_ z  e. 
NN0  ( ( 2 ^ z )  ||  a  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  a ) )  e. 
NN0 )
1816, 17syl 14 . . . . . . 7  |-  ( a  e.  NN  ->  ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a ) )  e.  NN0 )
19 nnexpcl 10489 . . . . . . 7  |-  ( ( 2  e.  NN  /\  ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  a  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  a
) )  e.  NN0 )  ->  ( 2 ^ ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  a  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  a
) ) )  e.  NN )
2015, 18, 19sylancr 412 . . . . . 6  |-  ( a  e.  NN  ->  (
2 ^ ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a ) ) )  e.  NN )
21 nn0nndivcl 9197 . . . . . 6  |-  ( ( a  e.  NN0  /\  ( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a ) ) )  e.  NN )  ->  ( a  / 
( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a ) ) ) )  e.  RR )
2214, 20, 21syl2anc 409 . . . . 5  |-  ( a  e.  NN  ->  (
a  /  ( 2 ^ ( iota_ z  e. 
NN0  ( ( 2 ^ z )  ||  a  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  a ) ) ) )  e.  RR )
2322, 18jca 304 . . . 4  |-  ( a  e.  NN  ->  (
( a  /  (
2 ^ ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a ) ) ) )  e.  RR  /\  ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a ) )  e.  NN0 )
)
2423adantl 275 . . 3  |-  ( ( T.  /\  a  e.  NN )  ->  (
( a  /  (
2 ^ ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a ) ) ) )  e.  RR  /\  ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a ) )  e.  NN0 )
)
258anbi1i 455 . . . . . 6  |-  ( ( x  e.  J  /\  y  e.  NN0 )  <->  ( (
x  e.  NN  /\  -.  2  ||  x )  /\  y  e.  NN0 ) )
2625anbi1i 455 . . . . 5  |-  ( ( ( x  e.  J  /\  y  e.  NN0 )  /\  a  =  ( ( 2 ^ y
)  x.  x ) )  <->  ( ( ( x  e.  NN  /\  -.  2  ||  x )  /\  y  e.  NN0 )  /\  a  =  ( ( 2 ^ y
)  x.  x ) ) )
27 oddpwdclemdc 12127 . . . . 5  |-  ( ( ( ( x  e.  NN  /\  -.  2  ||  x )  /\  y  e.  NN0 )  /\  a  =  ( ( 2 ^ y )  x.  x ) )  <->  ( a  e.  NN  /\  ( x  =  ( a  / 
( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a ) ) ) )  /\  y  =  ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a ) ) ) ) )
2826, 27bitri 183 . . . 4  |-  ( ( ( x  e.  J  /\  y  e.  NN0 )  /\  a  =  ( ( 2 ^ y
)  x.  x ) )  <->  ( a  e.  NN  /\  ( x  =  ( a  / 
( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a ) ) ) )  /\  y  =  ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a ) ) ) ) )
2928a1i 9 . . 3  |-  ( T. 
->  ( ( ( x  e.  J  /\  y  e.  NN0 )  /\  a  =  ( ( 2 ^ y )  x.  x ) )  <->  ( a  e.  NN  /\  ( x  =  ( a  / 
( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a ) ) ) )  /\  y  =  ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  a  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  a ) ) ) ) ) )
301, 13, 24, 29f1od2 6214 . 2  |-  ( T. 
->  F : ( J  X.  NN0 ) -1-1-onto-> NN )
3130mptru 1357 1  |-  F :
( J  X.  NN0 )
-1-1-onto-> NN
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    <-> wb 104    = wceq 1348   T. wtru 1349    e. wcel 2141   E!wreu 2450   {crab 2452   class class class wbr 3989    X. cxp 4609   -1-1-onto->wf1o 5197   iota_crio 5808  (class class class)co 5853    e. cmpo 5855   CCcc 7772   RRcr 7773   1c1 7775    + caddc 7777    x. cmul 7779    / cdiv 8589   NNcn 8878   2c2 8929   NN0cn0 9135   ^cexp 10475    || cdvds 11749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-dvds 11750
This theorem is referenced by:  sqpweven  12129  2sqpwodd  12130  xpnnen  12349
  Copyright terms: Public domain W3C validator