| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rngdi | Unicode version | ||
| Description: Distributive law for the multiplication operation of a non-unital ring (left-distributivity). (Contributed by AV, 14-Feb-2025.) |
| Ref | Expression |
|---|---|
| rngdi.b |
|
| rngdi.p |
|
| rngdi.t |
|
| Ref | Expression |
|---|---|
| rngdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngdi.b |
. . . 4
| |
| 2 | eqid 2205 |
. . . 4
| |
| 3 | rngdi.p |
. . . 4
| |
| 4 | rngdi.t |
. . . 4
| |
| 5 | 1, 2, 3, 4 | isrng 13696 |
. . 3
|
| 6 | oveq1 5951 |
. . . . . . . 8
| |
| 7 | oveq1 5951 |
. . . . . . . . 9
| |
| 8 | oveq1 5951 |
. . . . . . . . 9
| |
| 9 | 7, 8 | oveq12d 5962 |
. . . . . . . 8
|
| 10 | 6, 9 | eqeq12d 2220 |
. . . . . . 7
|
| 11 | oveq1 5951 |
. . . . . . . . 9
| |
| 12 | 11 | oveq1d 5959 |
. . . . . . . 8
|
| 13 | 8 | oveq1d 5959 |
. . . . . . . 8
|
| 14 | 12, 13 | eqeq12d 2220 |
. . . . . . 7
|
| 15 | 10, 14 | anbi12d 473 |
. . . . . 6
|
| 16 | oveq1 5951 |
. . . . . . . . 9
| |
| 17 | 16 | oveq2d 5960 |
. . . . . . . 8
|
| 18 | oveq2 5952 |
. . . . . . . . 9
| |
| 19 | 18 | oveq1d 5959 |
. . . . . . . 8
|
| 20 | 17, 19 | eqeq12d 2220 |
. . . . . . 7
|
| 21 | oveq2 5952 |
. . . . . . . . 9
| |
| 22 | 21 | oveq1d 5959 |
. . . . . . . 8
|
| 23 | oveq1 5951 |
. . . . . . . . 9
| |
| 24 | 23 | oveq2d 5960 |
. . . . . . . 8
|
| 25 | 22, 24 | eqeq12d 2220 |
. . . . . . 7
|
| 26 | 20, 25 | anbi12d 473 |
. . . . . 6
|
| 27 | oveq2 5952 |
. . . . . . . . 9
| |
| 28 | 27 | oveq2d 5960 |
. . . . . . . 8
|
| 29 | oveq2 5952 |
. . . . . . . . 9
| |
| 30 | 29 | oveq2d 5960 |
. . . . . . . 8
|
| 31 | 28, 30 | eqeq12d 2220 |
. . . . . . 7
|
| 32 | oveq2 5952 |
. . . . . . . 8
| |
| 33 | oveq2 5952 |
. . . . . . . . 9
| |
| 34 | 29, 33 | oveq12d 5962 |
. . . . . . . 8
|
| 35 | 32, 34 | eqeq12d 2220 |
. . . . . . 7
|
| 36 | 31, 35 | anbi12d 473 |
. . . . . 6
|
| 37 | 15, 26, 36 | rspc3v 2893 |
. . . . 5
|
| 38 | simpl 109 |
. . . . 5
| |
| 39 | 37, 38 | syl6com 35 |
. . . 4
|
| 40 | 39 | 3ad2ant3 1023 |
. . 3
|
| 41 | 5, 40 | sylbi 121 |
. 2
|
| 42 | 41 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-iota 5232 df-fun 5273 df-fn 5274 df-fv 5279 df-ov 5947 df-inn 9037 df-2 9095 df-3 9096 df-ndx 12835 df-slot 12836 df-base 12838 df-plusg 12922 df-mulr 12923 df-rng 13695 |
| This theorem is referenced by: rngrz 13708 rngmneg2 13710 rngsubdi 13713 rngressid 13716 imasrng 13718 opprrng 13839 issubrng2 13972 rnglidlrng 14260 |
| Copyright terms: Public domain | W3C validator |