ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rngdi Unicode version

Theorem rngdi 13436
Description: Distributive law for the multiplication operation of a non-unital ring (left-distributivity). (Contributed by AV, 14-Feb-2025.)
Hypotheses
Ref Expression
rngdi.b  |-  B  =  ( Base `  R
)
rngdi.p  |-  .+  =  ( +g  `  R )
rngdi.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
rngdi  |-  ( ( R  e. Rng  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( X  .x.  ( Y  .+  Z
) )  =  ( ( X  .x.  Y
)  .+  ( X  .x.  Z ) ) )

Proof of Theorem rngdi
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rngdi.b . . . 4  |-  B  =  ( Base `  R
)
2 eqid 2193 . . . 4  |-  (mulGrp `  R )  =  (mulGrp `  R )
3 rngdi.p . . . 4  |-  .+  =  ( +g  `  R )
4 rngdi.t . . . 4  |-  .x.  =  ( .r `  R )
51, 2, 3, 4isrng 13430 . . 3  |-  ( R  e. Rng 
<->  ( R  e.  Abel  /\  (mulGrp `  R )  e. Smgrp  /\  A. a  e.  B  A. b  e.  B  A. c  e.  B  ( ( a 
.x.  ( b  .+  c ) )  =  ( ( a  .x.  b )  .+  (
a  .x.  c )
)  /\  ( (
a  .+  b )  .x.  c )  =  ( ( a  .x.  c
)  .+  ( b  .x.  c ) ) ) ) )
6 oveq1 5925 . . . . . . . 8  |-  ( a  =  X  ->  (
a  .x.  ( b  .+  c ) )  =  ( X  .x.  (
b  .+  c )
) )
7 oveq1 5925 . . . . . . . . 9  |-  ( a  =  X  ->  (
a  .x.  b )  =  ( X  .x.  b ) )
8 oveq1 5925 . . . . . . . . 9  |-  ( a  =  X  ->  (
a  .x.  c )  =  ( X  .x.  c ) )
97, 8oveq12d 5936 . . . . . . . 8  |-  ( a  =  X  ->  (
( a  .x.  b
)  .+  ( a  .x.  c ) )  =  ( ( X  .x.  b )  .+  ( X  .x.  c ) ) )
106, 9eqeq12d 2208 . . . . . . 7  |-  ( a  =  X  ->  (
( a  .x.  (
b  .+  c )
)  =  ( ( a  .x.  b ) 
.+  ( a  .x.  c ) )  <->  ( X  .x.  ( b  .+  c
) )  =  ( ( X  .x.  b
)  .+  ( X  .x.  c ) ) ) )
11 oveq1 5925 . . . . . . . . 9  |-  ( a  =  X  ->  (
a  .+  b )  =  ( X  .+  b ) )
1211oveq1d 5933 . . . . . . . 8  |-  ( a  =  X  ->  (
( a  .+  b
)  .x.  c )  =  ( ( X 
.+  b )  .x.  c ) )
138oveq1d 5933 . . . . . . . 8  |-  ( a  =  X  ->  (
( a  .x.  c
)  .+  ( b  .x.  c ) )  =  ( ( X  .x.  c )  .+  (
b  .x.  c )
) )
1412, 13eqeq12d 2208 . . . . . . 7  |-  ( a  =  X  ->  (
( ( a  .+  b )  .x.  c
)  =  ( ( a  .x.  c ) 
.+  ( b  .x.  c ) )  <->  ( ( X  .+  b )  .x.  c )  =  ( ( X  .x.  c
)  .+  ( b  .x.  c ) ) ) )
1510, 14anbi12d 473 . . . . . 6  |-  ( a  =  X  ->  (
( ( a  .x.  ( b  .+  c
) )  =  ( ( a  .x.  b
)  .+  ( a  .x.  c ) )  /\  ( ( a  .+  b )  .x.  c
)  =  ( ( a  .x.  c ) 
.+  ( b  .x.  c ) ) )  <-> 
( ( X  .x.  ( b  .+  c
) )  =  ( ( X  .x.  b
)  .+  ( X  .x.  c ) )  /\  ( ( X  .+  b )  .x.  c
)  =  ( ( X  .x.  c ) 
.+  ( b  .x.  c ) ) ) ) )
16 oveq1 5925 . . . . . . . . 9  |-  ( b  =  Y  ->  (
b  .+  c )  =  ( Y  .+  c ) )
1716oveq2d 5934 . . . . . . . 8  |-  ( b  =  Y  ->  ( X  .x.  ( b  .+  c ) )  =  ( X  .x.  ( Y  .+  c ) ) )
18 oveq2 5926 . . . . . . . . 9  |-  ( b  =  Y  ->  ( X  .x.  b )  =  ( X  .x.  Y
) )
1918oveq1d 5933 . . . . . . . 8  |-  ( b  =  Y  ->  (
( X  .x.  b
)  .+  ( X  .x.  c ) )  =  ( ( X  .x.  Y )  .+  ( X  .x.  c ) ) )
2017, 19eqeq12d 2208 . . . . . . 7  |-  ( b  =  Y  ->  (
( X  .x.  (
b  .+  c )
)  =  ( ( X  .x.  b ) 
.+  ( X  .x.  c ) )  <->  ( X  .x.  ( Y  .+  c
) )  =  ( ( X  .x.  Y
)  .+  ( X  .x.  c ) ) ) )
21 oveq2 5926 . . . . . . . . 9  |-  ( b  =  Y  ->  ( X  .+  b )  =  ( X  .+  Y
) )
2221oveq1d 5933 . . . . . . . 8  |-  ( b  =  Y  ->  (
( X  .+  b
)  .x.  c )  =  ( ( X 
.+  Y )  .x.  c ) )
23 oveq1 5925 . . . . . . . . 9  |-  ( b  =  Y  ->  (
b  .x.  c )  =  ( Y  .x.  c ) )
2423oveq2d 5934 . . . . . . . 8  |-  ( b  =  Y  ->  (
( X  .x.  c
)  .+  ( b  .x.  c ) )  =  ( ( X  .x.  c )  .+  ( Y  .x.  c ) ) )
2522, 24eqeq12d 2208 . . . . . . 7  |-  ( b  =  Y  ->  (
( ( X  .+  b )  .x.  c
)  =  ( ( X  .x.  c ) 
.+  ( b  .x.  c ) )  <->  ( ( X  .+  Y )  .x.  c )  =  ( ( X  .x.  c
)  .+  ( Y  .x.  c ) ) ) )
2620, 25anbi12d 473 . . . . . 6  |-  ( b  =  Y  ->  (
( ( X  .x.  ( b  .+  c
) )  =  ( ( X  .x.  b
)  .+  ( X  .x.  c ) )  /\  ( ( X  .+  b )  .x.  c
)  =  ( ( X  .x.  c ) 
.+  ( b  .x.  c ) ) )  <-> 
( ( X  .x.  ( Y  .+  c ) )  =  ( ( X  .x.  Y ) 
.+  ( X  .x.  c ) )  /\  ( ( X  .+  Y )  .x.  c
)  =  ( ( X  .x.  c ) 
.+  ( Y  .x.  c ) ) ) ) )
27 oveq2 5926 . . . . . . . . 9  |-  ( c  =  Z  ->  ( Y  .+  c )  =  ( Y  .+  Z
) )
2827oveq2d 5934 . . . . . . . 8  |-  ( c  =  Z  ->  ( X  .x.  ( Y  .+  c ) )  =  ( X  .x.  ( Y  .+  Z ) ) )
29 oveq2 5926 . . . . . . . . 9  |-  ( c  =  Z  ->  ( X  .x.  c )  =  ( X  .x.  Z
) )
3029oveq2d 5934 . . . . . . . 8  |-  ( c  =  Z  ->  (
( X  .x.  Y
)  .+  ( X  .x.  c ) )  =  ( ( X  .x.  Y )  .+  ( X  .x.  Z ) ) )
3128, 30eqeq12d 2208 . . . . . . 7  |-  ( c  =  Z  ->  (
( X  .x.  ( Y  .+  c ) )  =  ( ( X 
.x.  Y )  .+  ( X  .x.  c ) )  <->  ( X  .x.  ( Y  .+  Z ) )  =  ( ( X  .x.  Y ) 
.+  ( X  .x.  Z ) ) ) )
32 oveq2 5926 . . . . . . . 8  |-  ( c  =  Z  ->  (
( X  .+  Y
)  .x.  c )  =  ( ( X 
.+  Y )  .x.  Z ) )
33 oveq2 5926 . . . . . . . . 9  |-  ( c  =  Z  ->  ( Y  .x.  c )  =  ( Y  .x.  Z
) )
3429, 33oveq12d 5936 . . . . . . . 8  |-  ( c  =  Z  ->  (
( X  .x.  c
)  .+  ( Y  .x.  c ) )  =  ( ( X  .x.  Z )  .+  ( Y  .x.  Z ) ) )
3532, 34eqeq12d 2208 . . . . . . 7  |-  ( c  =  Z  ->  (
( ( X  .+  Y )  .x.  c
)  =  ( ( X  .x.  c ) 
.+  ( Y  .x.  c ) )  <->  ( ( X  .+  Y )  .x.  Z )  =  ( ( X  .x.  Z
)  .+  ( Y  .x.  Z ) ) ) )
3631, 35anbi12d 473 . . . . . 6  |-  ( c  =  Z  ->  (
( ( X  .x.  ( Y  .+  c ) )  =  ( ( X  .x.  Y ) 
.+  ( X  .x.  c ) )  /\  ( ( X  .+  Y )  .x.  c
)  =  ( ( X  .x.  c ) 
.+  ( Y  .x.  c ) ) )  <-> 
( ( X  .x.  ( Y  .+  Z ) )  =  ( ( X  .x.  Y ) 
.+  ( X  .x.  Z ) )  /\  ( ( X  .+  Y )  .x.  Z
)  =  ( ( X  .x.  Z ) 
.+  ( Y  .x.  Z ) ) ) ) )
3715, 26, 36rspc3v 2880 . . . . 5  |-  ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  ->  ( A. a  e.  B  A. b  e.  B  A. c  e.  B  ( ( a 
.x.  ( b  .+  c ) )  =  ( ( a  .x.  b )  .+  (
a  .x.  c )
)  /\  ( (
a  .+  b )  .x.  c )  =  ( ( a  .x.  c
)  .+  ( b  .x.  c ) ) )  ->  ( ( X 
.x.  ( Y  .+  Z ) )  =  ( ( X  .x.  Y )  .+  ( X  .x.  Z ) )  /\  ( ( X 
.+  Y )  .x.  Z )  =  ( ( X  .x.  Z
)  .+  ( Y  .x.  Z ) ) ) ) )
38 simpl 109 . . . . 5  |-  ( ( ( X  .x.  ( Y  .+  Z ) )  =  ( ( X 
.x.  Y )  .+  ( X  .x.  Z ) )  /\  ( ( X  .+  Y ) 
.x.  Z )  =  ( ( X  .x.  Z )  .+  ( Y  .x.  Z ) ) )  ->  ( X  .x.  ( Y  .+  Z
) )  =  ( ( X  .x.  Y
)  .+  ( X  .x.  Z ) ) )
3937, 38syl6com 35 . . . 4  |-  ( A. a  e.  B  A. b  e.  B  A. c  e.  B  (
( a  .x.  (
b  .+  c )
)  =  ( ( a  .x.  b ) 
.+  ( a  .x.  c ) )  /\  ( ( a  .+  b )  .x.  c
)  =  ( ( a  .x.  c ) 
.+  ( b  .x.  c ) ) )  ->  ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  ->  ( X  .x.  ( Y  .+  Z ) )  =  ( ( X  .x.  Y )  .+  ( X  .x.  Z ) ) ) )
40393ad2ant3 1022 . . 3  |-  ( ( R  e.  Abel  /\  (mulGrp `  R )  e. Smgrp  /\  A. a  e.  B  A. b  e.  B  A. c  e.  B  (
( a  .x.  (
b  .+  c )
)  =  ( ( a  .x.  b ) 
.+  ( a  .x.  c ) )  /\  ( ( a  .+  b )  .x.  c
)  =  ( ( a  .x.  c ) 
.+  ( b  .x.  c ) ) ) )  ->  ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  ->  ( X  .x.  ( Y  .+  Z ) )  =  ( ( X 
.x.  Y )  .+  ( X  .x.  Z ) ) ) )
415, 40sylbi 121 . 2  |-  ( R  e. Rng  ->  ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  ->  ( X  .x.  ( Y  .+  Z ) )  =  ( ( X  .x.  Y )  .+  ( X  .x.  Z ) ) ) )
4241imp 124 1  |-  ( ( R  e. Rng  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( X  .x.  ( Y  .+  Z
) )  =  ( ( X  .x.  Y
)  .+  ( X  .x.  Z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472   ` cfv 5254  (class class class)co 5918   Basecbs 12618   +g cplusg 12695   .rcmulr 12696  Smgrpcsgrp 12984   Abelcabl 13355  mulGrpcmgp 13416  Rngcrng 13428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-ov 5921  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-mulr 12709  df-rng 13429
This theorem is referenced by:  rngrz  13442  rngmneg2  13444  rngsubdi  13447  rngressid  13450  imasrng  13452  opprrng  13573  issubrng2  13706  rnglidlrng  13994
  Copyright terms: Public domain W3C validator