| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rngdi | Unicode version | ||
| Description: Distributive law for the multiplication operation of a non-unital ring (left-distributivity). (Contributed by AV, 14-Feb-2025.) |
| Ref | Expression |
|---|---|
| rngdi.b |
|
| rngdi.p |
|
| rngdi.t |
|
| Ref | Expression |
|---|---|
| rngdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngdi.b |
. . . 4
| |
| 2 | eqid 2207 |
. . . 4
| |
| 3 | rngdi.p |
. . . 4
| |
| 4 | rngdi.t |
. . . 4
| |
| 5 | 1, 2, 3, 4 | isrng 13811 |
. . 3
|
| 6 | oveq1 5974 |
. . . . . . . 8
| |
| 7 | oveq1 5974 |
. . . . . . . . 9
| |
| 8 | oveq1 5974 |
. . . . . . . . 9
| |
| 9 | 7, 8 | oveq12d 5985 |
. . . . . . . 8
|
| 10 | 6, 9 | eqeq12d 2222 |
. . . . . . 7
|
| 11 | oveq1 5974 |
. . . . . . . . 9
| |
| 12 | 11 | oveq1d 5982 |
. . . . . . . 8
|
| 13 | 8 | oveq1d 5982 |
. . . . . . . 8
|
| 14 | 12, 13 | eqeq12d 2222 |
. . . . . . 7
|
| 15 | 10, 14 | anbi12d 473 |
. . . . . 6
|
| 16 | oveq1 5974 |
. . . . . . . . 9
| |
| 17 | 16 | oveq2d 5983 |
. . . . . . . 8
|
| 18 | oveq2 5975 |
. . . . . . . . 9
| |
| 19 | 18 | oveq1d 5982 |
. . . . . . . 8
|
| 20 | 17, 19 | eqeq12d 2222 |
. . . . . . 7
|
| 21 | oveq2 5975 |
. . . . . . . . 9
| |
| 22 | 21 | oveq1d 5982 |
. . . . . . . 8
|
| 23 | oveq1 5974 |
. . . . . . . . 9
| |
| 24 | 23 | oveq2d 5983 |
. . . . . . . 8
|
| 25 | 22, 24 | eqeq12d 2222 |
. . . . . . 7
|
| 26 | 20, 25 | anbi12d 473 |
. . . . . 6
|
| 27 | oveq2 5975 |
. . . . . . . . 9
| |
| 28 | 27 | oveq2d 5983 |
. . . . . . . 8
|
| 29 | oveq2 5975 |
. . . . . . . . 9
| |
| 30 | 29 | oveq2d 5983 |
. . . . . . . 8
|
| 31 | 28, 30 | eqeq12d 2222 |
. . . . . . 7
|
| 32 | oveq2 5975 |
. . . . . . . 8
| |
| 33 | oveq2 5975 |
. . . . . . . . 9
| |
| 34 | 29, 33 | oveq12d 5985 |
. . . . . . . 8
|
| 35 | 32, 34 | eqeq12d 2222 |
. . . . . . 7
|
| 36 | 31, 35 | anbi12d 473 |
. . . . . 6
|
| 37 | 15, 26, 36 | rspc3v 2900 |
. . . . 5
|
| 38 | simpl 109 |
. . . . 5
| |
| 39 | 37, 38 | syl6com 35 |
. . . 4
|
| 40 | 39 | 3ad2ant3 1023 |
. . 3
|
| 41 | 5, 40 | sylbi 121 |
. 2
|
| 42 | 41 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 df-ov 5970 df-inn 9072 df-2 9130 df-3 9131 df-ndx 12950 df-slot 12951 df-base 12953 df-plusg 13037 df-mulr 13038 df-rng 13810 |
| This theorem is referenced by: rngrz 13823 rngmneg2 13825 rngsubdi 13828 rngressid 13831 imasrng 13833 opprrng 13954 issubrng2 14087 rnglidlrng 14375 |
| Copyright terms: Public domain | W3C validator |