ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rngrz Unicode version

Theorem rngrz 13442
Description: The zero of a non-unital ring is a right-absorbing element. (Contributed by FL, 31-Aug-2009.) Generalization of ringrz 13540. (Revised by AV, 16-Feb-2025.)
Hypotheses
Ref Expression
rngcl.b  |-  B  =  ( Base `  R
)
rngcl.t  |-  .x.  =  ( .r `  R )
rnglz.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
rngrz  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  ( X  .x.  .0.  )  =  .0.  )

Proof of Theorem rngrz
StepHypRef Expression
1 rnggrp 13434 . . . . . 6  |-  ( R  e. Rng  ->  R  e.  Grp )
2 rngcl.b . . . . . . 7  |-  B  =  ( Base `  R
)
3 rnglz.z . . . . . . 7  |-  .0.  =  ( 0g `  R )
42, 3grpidcl 13101 . . . . . 6  |-  ( R  e.  Grp  ->  .0.  e.  B )
5 eqid 2193 . . . . . . 7  |-  ( +g  `  R )  =  ( +g  `  R )
62, 5, 3grplid 13103 . . . . . 6  |-  ( ( R  e.  Grp  /\  .0.  e.  B )  -> 
(  .0.  ( +g  `  R )  .0.  )  =  .0.  )
71, 4, 6syl2anc2 412 . . . . 5  |-  ( R  e. Rng  ->  (  .0.  ( +g  `  R )  .0.  )  =  .0.  )
87adantr 276 . . . 4  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  (  .0.  ( +g  `  R
)  .0.  )  =  .0.  )
98oveq2d 5934 . . 3  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  ( X  .x.  (  .0.  ( +g  `  R )  .0.  ) )  =  ( X  .x.  .0.  )
)
10 simpr 110 . . . . 5  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  X  e.  B )
112, 3rng0cl 13439 . . . . . 6  |-  ( R  e. Rng  ->  .0.  e.  B
)
1211adantr 276 . . . . 5  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  .0.  e.  B )
1310, 12, 123jca 1179 . . . 4  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  ( X  e.  B  /\  .0.  e.  B  /\  .0.  e.  B ) )
14 rngcl.t . . . . 5  |-  .x.  =  ( .r `  R )
152, 5, 14rngdi 13436 . . . 4  |-  ( ( R  e. Rng  /\  ( X  e.  B  /\  .0.  e.  B  /\  .0.  e.  B ) )  -> 
( X  .x.  (  .0.  ( +g  `  R
)  .0.  ) )  =  ( ( X 
.x.  .0.  ) ( +g  `  R ) ( X  .x.  .0.  )
) )
1613, 15syldan 282 . . 3  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  ( X  .x.  (  .0.  ( +g  `  R )  .0.  ) )  =  ( ( X  .x.  .0.  ) ( +g  `  R
) ( X  .x.  .0.  ) ) )
171adantr 276 . . . 4  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  R  e.  Grp )
182, 14rngcl 13440 . . . . 5  |-  ( ( R  e. Rng  /\  X  e.  B  /\  .0.  e.  B )  ->  ( X  .x.  .0.  )  e.  B )
1912, 18mpd3an3 1349 . . . 4  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  ( X  .x.  .0.  )  e.  B )
202, 5, 3grplid 13103 . . . . 5  |-  ( ( R  e.  Grp  /\  ( X  .x.  .0.  )  e.  B )  ->  (  .0.  ( +g  `  R
) ( X  .x.  .0.  ) )  =  ( X  .x.  .0.  )
)
2120eqcomd 2199 . . . 4  |-  ( ( R  e.  Grp  /\  ( X  .x.  .0.  )  e.  B )  ->  ( X  .x.  .0.  )  =  (  .0.  ( +g  `  R ) ( X 
.x.  .0.  ) )
)
2217, 19, 21syl2anc 411 . . 3  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  ( X  .x.  .0.  )  =  (  .0.  ( +g  `  R ) ( X 
.x.  .0.  ) )
)
239, 16, 223eqtr3d 2234 . 2  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  (
( X  .x.  .0.  ) ( +g  `  R
) ( X  .x.  .0.  ) )  =  (  .0.  ( +g  `  R
) ( X  .x.  .0.  ) ) )
242, 5grprcan 13109 . . 3  |-  ( ( R  e.  Grp  /\  ( ( X  .x.  .0.  )  e.  B  /\  .0.  e.  B  /\  ( X  .x.  .0.  )  e.  B ) )  -> 
( ( ( X 
.x.  .0.  ) ( +g  `  R ) ( X  .x.  .0.  )
)  =  (  .0.  ( +g  `  R
) ( X  .x.  .0.  ) )  <->  ( X  .x.  .0.  )  =  .0.  ) )
2517, 19, 12, 19, 24syl13anc 1251 . 2  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  (
( ( X  .x.  .0.  ) ( +g  `  R
) ( X  .x.  .0.  ) )  =  (  .0.  ( +g  `  R
) ( X  .x.  .0.  ) )  <->  ( X  .x.  .0.  )  =  .0.  ) )
2623, 25mpbid 147 1  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  ( X  .x.  .0.  )  =  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   ` cfv 5254  (class class class)co 5918   Basecbs 12618   +g cplusg 12695   .rcmulr 12696   0gc0g 12867   Grpcgrp 13072  Rngcrng 13428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-abl 13357  df-mgp 13417  df-rng 13429
This theorem is referenced by:  rngmneg2  13444
  Copyright terms: Public domain W3C validator