ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rngrz Unicode version

Theorem rngrz 13502
Description: The zero of a non-unital ring is a right-absorbing element. (Contributed by FL, 31-Aug-2009.) Generalization of ringrz 13600. (Revised by AV, 16-Feb-2025.)
Hypotheses
Ref Expression
rngcl.b  |-  B  =  ( Base `  R
)
rngcl.t  |-  .x.  =  ( .r `  R )
rnglz.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
rngrz  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  ( X  .x.  .0.  )  =  .0.  )

Proof of Theorem rngrz
StepHypRef Expression
1 rnggrp 13494 . . . . . 6  |-  ( R  e. Rng  ->  R  e.  Grp )
2 rngcl.b . . . . . . 7  |-  B  =  ( Base `  R
)
3 rnglz.z . . . . . . 7  |-  .0.  =  ( 0g `  R )
42, 3grpidcl 13161 . . . . . 6  |-  ( R  e.  Grp  ->  .0.  e.  B )
5 eqid 2196 . . . . . . 7  |-  ( +g  `  R )  =  ( +g  `  R )
62, 5, 3grplid 13163 . . . . . 6  |-  ( ( R  e.  Grp  /\  .0.  e.  B )  -> 
(  .0.  ( +g  `  R )  .0.  )  =  .0.  )
71, 4, 6syl2anc2 412 . . . . 5  |-  ( R  e. Rng  ->  (  .0.  ( +g  `  R )  .0.  )  =  .0.  )
87adantr 276 . . . 4  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  (  .0.  ( +g  `  R
)  .0.  )  =  .0.  )
98oveq2d 5938 . . 3  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  ( X  .x.  (  .0.  ( +g  `  R )  .0.  ) )  =  ( X  .x.  .0.  )
)
10 simpr 110 . . . . 5  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  X  e.  B )
112, 3rng0cl 13499 . . . . . 6  |-  ( R  e. Rng  ->  .0.  e.  B
)
1211adantr 276 . . . . 5  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  .0.  e.  B )
1310, 12, 123jca 1179 . . . 4  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  ( X  e.  B  /\  .0.  e.  B  /\  .0.  e.  B ) )
14 rngcl.t . . . . 5  |-  .x.  =  ( .r `  R )
152, 5, 14rngdi 13496 . . . 4  |-  ( ( R  e. Rng  /\  ( X  e.  B  /\  .0.  e.  B  /\  .0.  e.  B ) )  -> 
( X  .x.  (  .0.  ( +g  `  R
)  .0.  ) )  =  ( ( X 
.x.  .0.  ) ( +g  `  R ) ( X  .x.  .0.  )
) )
1613, 15syldan 282 . . 3  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  ( X  .x.  (  .0.  ( +g  `  R )  .0.  ) )  =  ( ( X  .x.  .0.  ) ( +g  `  R
) ( X  .x.  .0.  ) ) )
171adantr 276 . . . 4  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  R  e.  Grp )
182, 14rngcl 13500 . . . . 5  |-  ( ( R  e. Rng  /\  X  e.  B  /\  .0.  e.  B )  ->  ( X  .x.  .0.  )  e.  B )
1912, 18mpd3an3 1349 . . . 4  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  ( X  .x.  .0.  )  e.  B )
202, 5, 3grplid 13163 . . . . 5  |-  ( ( R  e.  Grp  /\  ( X  .x.  .0.  )  e.  B )  ->  (  .0.  ( +g  `  R
) ( X  .x.  .0.  ) )  =  ( X  .x.  .0.  )
)
2120eqcomd 2202 . . . 4  |-  ( ( R  e.  Grp  /\  ( X  .x.  .0.  )  e.  B )  ->  ( X  .x.  .0.  )  =  (  .0.  ( +g  `  R ) ( X 
.x.  .0.  ) )
)
2217, 19, 21syl2anc 411 . . 3  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  ( X  .x.  .0.  )  =  (  .0.  ( +g  `  R ) ( X 
.x.  .0.  ) )
)
239, 16, 223eqtr3d 2237 . 2  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  (
( X  .x.  .0.  ) ( +g  `  R
) ( X  .x.  .0.  ) )  =  (  .0.  ( +g  `  R
) ( X  .x.  .0.  ) ) )
242, 5grprcan 13169 . . 3  |-  ( ( R  e.  Grp  /\  ( ( X  .x.  .0.  )  e.  B  /\  .0.  e.  B  /\  ( X  .x.  .0.  )  e.  B ) )  -> 
( ( ( X 
.x.  .0.  ) ( +g  `  R ) ( X  .x.  .0.  )
)  =  (  .0.  ( +g  `  R
) ( X  .x.  .0.  ) )  <->  ( X  .x.  .0.  )  =  .0.  ) )
2517, 19, 12, 19, 24syl13anc 1251 . 2  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  (
( ( X  .x.  .0.  ) ( +g  `  R
) ( X  .x.  .0.  ) )  =  (  .0.  ( +g  `  R
) ( X  .x.  .0.  ) )  <->  ( X  .x.  .0.  )  =  .0.  ) )
2623, 25mpbid 147 1  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  ( X  .x.  .0.  )  =  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   ` cfv 5258  (class class class)co 5922   Basecbs 12678   +g cplusg 12755   .rcmulr 12756   0gc0g 12927   Grpcgrp 13132  Rngcrng 13488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-abl 13417  df-mgp 13477  df-rng 13489
This theorem is referenced by:  rngmneg2  13504
  Copyright terms: Public domain W3C validator