| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > rngrz | Unicode version | ||
| Description: The zero of a non-unital ring is a right-absorbing element. (Contributed by FL, 31-Aug-2009.) Generalization of ringrz 13600. (Revised by AV, 16-Feb-2025.) | 
| Ref | Expression | 
|---|---|
| rngcl.b | 
 | 
| rngcl.t | 
 | 
| rnglz.z | 
 | 
| Ref | Expression | 
|---|---|
| rngrz | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rnggrp 13494 | 
. . . . . 6
 | |
| 2 | rngcl.b | 
. . . . . . 7
 | |
| 3 | rnglz.z | 
. . . . . . 7
 | |
| 4 | 2, 3 | grpidcl 13161 | 
. . . . . 6
 | 
| 5 | eqid 2196 | 
. . . . . . 7
 | |
| 6 | 2, 5, 3 | grplid 13163 | 
. . . . . 6
 | 
| 7 | 1, 4, 6 | syl2anc2 412 | 
. . . . 5
 | 
| 8 | 7 | adantr 276 | 
. . . 4
 | 
| 9 | 8 | oveq2d 5938 | 
. . 3
 | 
| 10 | simpr 110 | 
. . . . 5
 | |
| 11 | 2, 3 | rng0cl 13499 | 
. . . . . 6
 | 
| 12 | 11 | adantr 276 | 
. . . . 5
 | 
| 13 | 10, 12, 12 | 3jca 1179 | 
. . . 4
 | 
| 14 | rngcl.t | 
. . . . 5
 | |
| 15 | 2, 5, 14 | rngdi 13496 | 
. . . 4
 | 
| 16 | 13, 15 | syldan 282 | 
. . 3
 | 
| 17 | 1 | adantr 276 | 
. . . 4
 | 
| 18 | 2, 14 | rngcl 13500 | 
. . . . 5
 | 
| 19 | 12, 18 | mpd3an3 1349 | 
. . . 4
 | 
| 20 | 2, 5, 3 | grplid 13163 | 
. . . . 5
 | 
| 21 | 20 | eqcomd 2202 | 
. . . 4
 | 
| 22 | 17, 19, 21 | syl2anc 411 | 
. . 3
 | 
| 23 | 9, 16, 22 | 3eqtr3d 2237 | 
. 2
 | 
| 24 | 2, 5 | grprcan 13169 | 
. . 3
 | 
| 25 | 17, 19, 12, 19, 24 | syl13anc 1251 | 
. 2
 | 
| 26 | 23, 25 | mpbid 147 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-3 9050 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-plusg 12768 df-mulr 12769 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-abl 13417 df-mgp 13477 df-rng 13489 | 
| This theorem is referenced by: rngmneg2 13504 | 
| Copyright terms: Public domain | W3C validator |