ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rngdi GIF version

Theorem rngdi 13572
Description: Distributive law for the multiplication operation of a non-unital ring (left-distributivity). (Contributed by AV, 14-Feb-2025.)
Hypotheses
Ref Expression
rngdi.b 𝐵 = (Base‘𝑅)
rngdi.p + = (+g𝑅)
rngdi.t · = (.r𝑅)
Assertion
Ref Expression
rngdi ((𝑅 ∈ Rng ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)))

Proof of Theorem rngdi
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rngdi.b . . . 4 𝐵 = (Base‘𝑅)
2 eqid 2196 . . . 4 (mulGrp‘𝑅) = (mulGrp‘𝑅)
3 rngdi.p . . . 4 + = (+g𝑅)
4 rngdi.t . . . 4 · = (.r𝑅)
51, 2, 3, 4isrng 13566 . . 3 (𝑅 ∈ Rng ↔ (𝑅 ∈ Abel ∧ (mulGrp‘𝑅) ∈ Smgrp ∧ ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝑎 · (𝑏 + 𝑐)) = ((𝑎 · 𝑏) + (𝑎 · 𝑐)) ∧ ((𝑎 + 𝑏) · 𝑐) = ((𝑎 · 𝑐) + (𝑏 · 𝑐)))))
6 oveq1 5932 . . . . . . . 8 (𝑎 = 𝑋 → (𝑎 · (𝑏 + 𝑐)) = (𝑋 · (𝑏 + 𝑐)))
7 oveq1 5932 . . . . . . . . 9 (𝑎 = 𝑋 → (𝑎 · 𝑏) = (𝑋 · 𝑏))
8 oveq1 5932 . . . . . . . . 9 (𝑎 = 𝑋 → (𝑎 · 𝑐) = (𝑋 · 𝑐))
97, 8oveq12d 5943 . . . . . . . 8 (𝑎 = 𝑋 → ((𝑎 · 𝑏) + (𝑎 · 𝑐)) = ((𝑋 · 𝑏) + (𝑋 · 𝑐)))
106, 9eqeq12d 2211 . . . . . . 7 (𝑎 = 𝑋 → ((𝑎 · (𝑏 + 𝑐)) = ((𝑎 · 𝑏) + (𝑎 · 𝑐)) ↔ (𝑋 · (𝑏 + 𝑐)) = ((𝑋 · 𝑏) + (𝑋 · 𝑐))))
11 oveq1 5932 . . . . . . . . 9 (𝑎 = 𝑋 → (𝑎 + 𝑏) = (𝑋 + 𝑏))
1211oveq1d 5940 . . . . . . . 8 (𝑎 = 𝑋 → ((𝑎 + 𝑏) · 𝑐) = ((𝑋 + 𝑏) · 𝑐))
138oveq1d 5940 . . . . . . . 8 (𝑎 = 𝑋 → ((𝑎 · 𝑐) + (𝑏 · 𝑐)) = ((𝑋 · 𝑐) + (𝑏 · 𝑐)))
1412, 13eqeq12d 2211 . . . . . . 7 (𝑎 = 𝑋 → (((𝑎 + 𝑏) · 𝑐) = ((𝑎 · 𝑐) + (𝑏 · 𝑐)) ↔ ((𝑋 + 𝑏) · 𝑐) = ((𝑋 · 𝑐) + (𝑏 · 𝑐))))
1510, 14anbi12d 473 . . . . . 6 (𝑎 = 𝑋 → (((𝑎 · (𝑏 + 𝑐)) = ((𝑎 · 𝑏) + (𝑎 · 𝑐)) ∧ ((𝑎 + 𝑏) · 𝑐) = ((𝑎 · 𝑐) + (𝑏 · 𝑐))) ↔ ((𝑋 · (𝑏 + 𝑐)) = ((𝑋 · 𝑏) + (𝑋 · 𝑐)) ∧ ((𝑋 + 𝑏) · 𝑐) = ((𝑋 · 𝑐) + (𝑏 · 𝑐)))))
16 oveq1 5932 . . . . . . . . 9 (𝑏 = 𝑌 → (𝑏 + 𝑐) = (𝑌 + 𝑐))
1716oveq2d 5941 . . . . . . . 8 (𝑏 = 𝑌 → (𝑋 · (𝑏 + 𝑐)) = (𝑋 · (𝑌 + 𝑐)))
18 oveq2 5933 . . . . . . . . 9 (𝑏 = 𝑌 → (𝑋 · 𝑏) = (𝑋 · 𝑌))
1918oveq1d 5940 . . . . . . . 8 (𝑏 = 𝑌 → ((𝑋 · 𝑏) + (𝑋 · 𝑐)) = ((𝑋 · 𝑌) + (𝑋 · 𝑐)))
2017, 19eqeq12d 2211 . . . . . . 7 (𝑏 = 𝑌 → ((𝑋 · (𝑏 + 𝑐)) = ((𝑋 · 𝑏) + (𝑋 · 𝑐)) ↔ (𝑋 · (𝑌 + 𝑐)) = ((𝑋 · 𝑌) + (𝑋 · 𝑐))))
21 oveq2 5933 . . . . . . . . 9 (𝑏 = 𝑌 → (𝑋 + 𝑏) = (𝑋 + 𝑌))
2221oveq1d 5940 . . . . . . . 8 (𝑏 = 𝑌 → ((𝑋 + 𝑏) · 𝑐) = ((𝑋 + 𝑌) · 𝑐))
23 oveq1 5932 . . . . . . . . 9 (𝑏 = 𝑌 → (𝑏 · 𝑐) = (𝑌 · 𝑐))
2423oveq2d 5941 . . . . . . . 8 (𝑏 = 𝑌 → ((𝑋 · 𝑐) + (𝑏 · 𝑐)) = ((𝑋 · 𝑐) + (𝑌 · 𝑐)))
2522, 24eqeq12d 2211 . . . . . . 7 (𝑏 = 𝑌 → (((𝑋 + 𝑏) · 𝑐) = ((𝑋 · 𝑐) + (𝑏 · 𝑐)) ↔ ((𝑋 + 𝑌) · 𝑐) = ((𝑋 · 𝑐) + (𝑌 · 𝑐))))
2620, 25anbi12d 473 . . . . . 6 (𝑏 = 𝑌 → (((𝑋 · (𝑏 + 𝑐)) = ((𝑋 · 𝑏) + (𝑋 · 𝑐)) ∧ ((𝑋 + 𝑏) · 𝑐) = ((𝑋 · 𝑐) + (𝑏 · 𝑐))) ↔ ((𝑋 · (𝑌 + 𝑐)) = ((𝑋 · 𝑌) + (𝑋 · 𝑐)) ∧ ((𝑋 + 𝑌) · 𝑐) = ((𝑋 · 𝑐) + (𝑌 · 𝑐)))))
27 oveq2 5933 . . . . . . . . 9 (𝑐 = 𝑍 → (𝑌 + 𝑐) = (𝑌 + 𝑍))
2827oveq2d 5941 . . . . . . . 8 (𝑐 = 𝑍 → (𝑋 · (𝑌 + 𝑐)) = (𝑋 · (𝑌 + 𝑍)))
29 oveq2 5933 . . . . . . . . 9 (𝑐 = 𝑍 → (𝑋 · 𝑐) = (𝑋 · 𝑍))
3029oveq2d 5941 . . . . . . . 8 (𝑐 = 𝑍 → ((𝑋 · 𝑌) + (𝑋 · 𝑐)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)))
3128, 30eqeq12d 2211 . . . . . . 7 (𝑐 = 𝑍 → ((𝑋 · (𝑌 + 𝑐)) = ((𝑋 · 𝑌) + (𝑋 · 𝑐)) ↔ (𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍))))
32 oveq2 5933 . . . . . . . 8 (𝑐 = 𝑍 → ((𝑋 + 𝑌) · 𝑐) = ((𝑋 + 𝑌) · 𝑍))
33 oveq2 5933 . . . . . . . . 9 (𝑐 = 𝑍 → (𝑌 · 𝑐) = (𝑌 · 𝑍))
3429, 33oveq12d 5943 . . . . . . . 8 (𝑐 = 𝑍 → ((𝑋 · 𝑐) + (𝑌 · 𝑐)) = ((𝑋 · 𝑍) + (𝑌 · 𝑍)))
3532, 34eqeq12d 2211 . . . . . . 7 (𝑐 = 𝑍 → (((𝑋 + 𝑌) · 𝑐) = ((𝑋 · 𝑐) + (𝑌 · 𝑐)) ↔ ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍))))
3631, 35anbi12d 473 . . . . . 6 (𝑐 = 𝑍 → (((𝑋 · (𝑌 + 𝑐)) = ((𝑋 · 𝑌) + (𝑋 · 𝑐)) ∧ ((𝑋 + 𝑌) · 𝑐) = ((𝑋 · 𝑐) + (𝑌 · 𝑐))) ↔ ((𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)) ∧ ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍)))))
3715, 26, 36rspc3v 2884 . . . . 5 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝑎 · (𝑏 + 𝑐)) = ((𝑎 · 𝑏) + (𝑎 · 𝑐)) ∧ ((𝑎 + 𝑏) · 𝑐) = ((𝑎 · 𝑐) + (𝑏 · 𝑐))) → ((𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)) ∧ ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍)))))
38 simpl 109 . . . . 5 (((𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)) ∧ ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍))) → (𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)))
3937, 38syl6com 35 . . . 4 (∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝑎 · (𝑏 + 𝑐)) = ((𝑎 · 𝑏) + (𝑎 · 𝑐)) ∧ ((𝑎 + 𝑏) · 𝑐) = ((𝑎 · 𝑐) + (𝑏 · 𝑐))) → ((𝑋𝐵𝑌𝐵𝑍𝐵) → (𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍))))
40393ad2ant3 1022 . . 3 ((𝑅 ∈ Abel ∧ (mulGrp‘𝑅) ∈ Smgrp ∧ ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝑎 · (𝑏 + 𝑐)) = ((𝑎 · 𝑏) + (𝑎 · 𝑐)) ∧ ((𝑎 + 𝑏) · 𝑐) = ((𝑎 · 𝑐) + (𝑏 · 𝑐)))) → ((𝑋𝐵𝑌𝐵𝑍𝐵) → (𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍))))
415, 40sylbi 121 . 2 (𝑅 ∈ Rng → ((𝑋𝐵𝑌𝐵𝑍𝐵) → (𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍))))
4241imp 124 1 ((𝑅 ∈ Rng ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  wral 2475  cfv 5259  (class class class)co 5925  Basecbs 12703  +gcplusg 12780  .rcmulr 12781  Smgrpcsgrp 13103  Abelcabl 13491  mulGrpcmgp 13552  Rngcrng 13564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-ov 5928  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-mulr 12794  df-rng 13565
This theorem is referenced by:  rngrz  13578  rngmneg2  13580  rngsubdi  13583  rngressid  13586  imasrng  13588  opprrng  13709  issubrng2  13842  rnglidlrng  14130
  Copyright terms: Public domain W3C validator