ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubrng2 Unicode version

Theorem issubrng2 13844
Description: Characterize the subrings of a ring by closure properties. (Contributed by AV, 15-Feb-2025.)
Hypotheses
Ref Expression
issubrng2.b  |-  B  =  ( Base `  R
)
issubrng2.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
issubrng2  |-  ( R  e. Rng  ->  ( A  e.  (SubRng `  R )  <->  ( A  e.  (SubGrp `  R )  /\  A. x  e.  A  A. y  e.  A  (
x  .x.  y )  e.  A ) ) )
Distinct variable groups:    x, y, A   
x, R, y    x,  .x. , y
Allowed substitution hints:    B( x, y)

Proof of Theorem issubrng2
Dummy variables  v  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrngsubg 13838 . . 3  |-  ( A  e.  (SubRng `  R
)  ->  A  e.  (SubGrp `  R ) )
2 issubrng2.t . . . . . 6  |-  .x.  =  ( .r `  R )
32subrngmcl 13843 . . . . 5  |-  ( ( A  e.  (SubRng `  R )  /\  x  e.  A  /\  y  e.  A )  ->  (
x  .x.  y )  e.  A )
433expb 1206 . . . 4  |-  ( ( A  e.  (SubRng `  R )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( x  .x.  y )  e.  A
)
54ralrimivva 2579 . . 3  |-  ( A  e.  (SubRng `  R
)  ->  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
)
61, 5jca 306 . 2  |-  ( A  e.  (SubRng `  R
)  ->  ( A  e.  (SubGrp `  R )  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A ) )
7 simpl 109 . . . 4  |-  ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  R  e. Rng )
8 simprl 529 . . . . . 6  |-  ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  A  e.  (SubGrp `  R )
)
9 eqid 2196 . . . . . . 7  |-  ( Rs  A )  =  ( Rs  A )
109subgbas 13386 . . . . . 6  |-  ( A  e.  (SubGrp `  R
)  ->  A  =  ( Base `  ( Rs  A
) ) )
118, 10syl 14 . . . . 5  |-  ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  A  =  ( Base `  ( Rs  A ) ) )
12 eqidd 2197 . . . . . . 7  |-  ( A  e.  (SubGrp `  R
)  ->  ( Rs  A
)  =  ( Rs  A ) )
13 eqidd 2197 . . . . . . 7  |-  ( A  e.  (SubGrp `  R
)  ->  ( +g  `  R )  =  ( +g  `  R ) )
14 id 19 . . . . . . 7  |-  ( A  e.  (SubGrp `  R
)  ->  A  e.  (SubGrp `  R ) )
15 subgrcl 13387 . . . . . . 7  |-  ( A  e.  (SubGrp `  R
)  ->  R  e.  Grp )
1612, 13, 14, 15ressplusgd 12833 . . . . . 6  |-  ( A  e.  (SubGrp `  R
)  ->  ( +g  `  R )  =  ( +g  `  ( Rs  A ) ) )
178, 16syl 14 . . . . 5  |-  ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  ( +g  `  R )  =  ( +g  `  ( Rs  A ) ) )
189, 2ressmulrg 12849 . . . . . 6  |-  ( ( A  e.  (SubGrp `  R )  /\  R  e.  Grp )  ->  .x.  =  ( .r `  ( Rs  A ) ) )
198, 15, 18syl2anc2 412 . . . . 5  |-  ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  .x.  =  ( .r `  ( Rs  A ) ) )
20 rngabl 13569 . . . . . 6  |-  ( R  e. Rng  ->  R  e.  Abel )
219subgabl 13540 . . . . . 6  |-  ( ( R  e.  Abel  /\  A  e.  (SubGrp `  R )
)  ->  ( Rs  A
)  e.  Abel )
2220, 8, 21syl2an2r 595 . . . . 5  |-  ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  ( Rs  A )  e.  Abel )
23 simprr 531 . . . . . . 7  |-  ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
)
24 oveq1 5932 . . . . . . . . 9  |-  ( x  =  u  ->  (
x  .x.  y )  =  ( u  .x.  y ) )
2524eleq1d 2265 . . . . . . . 8  |-  ( x  =  u  ->  (
( x  .x.  y
)  e.  A  <->  ( u  .x.  y )  e.  A
) )
26 oveq2 5933 . . . . . . . . 9  |-  ( y  =  v  ->  (
u  .x.  y )  =  ( u  .x.  v ) )
2726eleq1d 2265 . . . . . . . 8  |-  ( y  =  v  ->  (
( u  .x.  y
)  e.  A  <->  ( u  .x.  v )  e.  A
) )
2825, 27rspc2v 2881 . . . . . . 7  |-  ( ( u  e.  A  /\  v  e.  A )  ->  ( A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A  ->  ( u  .x.  v
)  e.  A ) )
2923, 28syl5com 29 . . . . . 6  |-  ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  (
( u  e.  A  /\  v  e.  A
)  ->  ( u  .x.  v )  e.  A
) )
30293impib 1203 . . . . 5  |-  ( ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R )  /\  A. x  e.  A  A. y  e.  A  (
x  .x.  y )  e.  A ) )  /\  u  e.  A  /\  v  e.  A )  ->  ( u  .x.  v
)  e.  A )
31 issubrng2.b . . . . . . . . . . 11  |-  B  =  ( Base `  R
)
3231subgss 13382 . . . . . . . . . 10  |-  ( A  e.  (SubGrp `  R
)  ->  A  C_  B
)
338, 32syl 14 . . . . . . . . 9  |-  ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  A  C_  B )
3433sseld 3183 . . . . . . . 8  |-  ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  (
u  e.  A  ->  u  e.  B )
)
3533sseld 3183 . . . . . . . 8  |-  ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  (
v  e.  A  -> 
v  e.  B ) )
3633sseld 3183 . . . . . . . 8  |-  ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  (
w  e.  A  ->  w  e.  B )
)
3734, 35, 363anim123d 1330 . . . . . . 7  |-  ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  (
( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  ->  ( u  e.  B  /\  v  e.  B  /\  w  e.  B ) ) )
3837imp 124 . . . . . 6  |-  ( ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R )  /\  A. x  e.  A  A. y  e.  A  (
x  .x.  y )  e.  A ) )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
) )  ->  (
u  e.  B  /\  v  e.  B  /\  w  e.  B )
)
3931, 2rngass 13573 . . . . . . 7  |-  ( ( R  e. Rng  /\  (
u  e.  B  /\  v  e.  B  /\  w  e.  B )
)  ->  ( (
u  .x.  v )  .x.  w )  =  ( u  .x.  ( v 
.x.  w ) ) )
4039adantlr 477 . . . . . 6  |-  ( ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R )  /\  A. x  e.  A  A. y  e.  A  (
x  .x.  y )  e.  A ) )  /\  ( u  e.  B  /\  v  e.  B  /\  w  e.  B
) )  ->  (
( u  .x.  v
)  .x.  w )  =  ( u  .x.  ( v  .x.  w
) ) )
4138, 40syldan 282 . . . . 5  |-  ( ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R )  /\  A. x  e.  A  A. y  e.  A  (
x  .x.  y )  e.  A ) )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
) )  ->  (
( u  .x.  v
)  .x.  w )  =  ( u  .x.  ( v  .x.  w
) ) )
42 eqid 2196 . . . . . . . 8  |-  ( +g  `  R )  =  ( +g  `  R )
4331, 42, 2rngdi 13574 . . . . . . 7  |-  ( ( R  e. Rng  /\  (
u  e.  B  /\  v  e.  B  /\  w  e.  B )
)  ->  ( u  .x.  ( v ( +g  `  R ) w ) )  =  ( ( u  .x.  v ) ( +g  `  R
) ( u  .x.  w ) ) )
4443adantlr 477 . . . . . 6  |-  ( ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R )  /\  A. x  e.  A  A. y  e.  A  (
x  .x.  y )  e.  A ) )  /\  ( u  e.  B  /\  v  e.  B  /\  w  e.  B
) )  ->  (
u  .x.  ( v
( +g  `  R ) w ) )  =  ( ( u  .x.  v ) ( +g  `  R ) ( u 
.x.  w ) ) )
4538, 44syldan 282 . . . . 5  |-  ( ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R )  /\  A. x  e.  A  A. y  e.  A  (
x  .x.  y )  e.  A ) )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
) )  ->  (
u  .x.  ( v
( +g  `  R ) w ) )  =  ( ( u  .x.  v ) ( +g  `  R ) ( u 
.x.  w ) ) )
4631, 42, 2rngdir 13575 . . . . . . 7  |-  ( ( R  e. Rng  /\  (
u  e.  B  /\  v  e.  B  /\  w  e.  B )
)  ->  ( (
u ( +g  `  R
) v )  .x.  w )  =  ( ( u  .x.  w
) ( +g  `  R
) ( v  .x.  w ) ) )
4746adantlr 477 . . . . . 6  |-  ( ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R )  /\  A. x  e.  A  A. y  e.  A  (
x  .x.  y )  e.  A ) )  /\  ( u  e.  B  /\  v  e.  B  /\  w  e.  B
) )  ->  (
( u ( +g  `  R ) v ) 
.x.  w )  =  ( ( u  .x.  w ) ( +g  `  R ) ( v 
.x.  w ) ) )
4838, 47syldan 282 . . . . 5  |-  ( ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R )  /\  A. x  e.  A  A. y  e.  A  (
x  .x.  y )  e.  A ) )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
) )  ->  (
( u ( +g  `  R ) v ) 
.x.  w )  =  ( ( u  .x.  w ) ( +g  `  R ) ( v 
.x.  w ) ) )
4911, 17, 19, 22, 30, 41, 45, 48isrngd 13587 . . . 4  |-  ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  ( Rs  A )  e. Rng )
5031issubrng 13833 . . . 4  |-  ( A  e.  (SubRng `  R
)  <->  ( R  e. Rng  /\  ( Rs  A )  e. Rng  /\  A  C_  B ) )
517, 49, 33, 50syl3anbrc 1183 . . 3  |-  ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  A  e.  (SubRng `  R )
)
5251ex 115 . 2  |-  ( R  e. Rng  ->  ( ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
)  ->  A  e.  (SubRng `  R ) ) )
536, 52impbid2 143 1  |-  ( R  e. Rng  ->  ( A  e.  (SubRng `  R )  <->  ( A  e.  (SubGrp `  R )  /\  A. x  e.  A  A. y  e.  A  (
x  .x.  y )  e.  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475    C_ wss 3157   ` cfv 5259  (class class class)co 5925   Basecbs 12705   ↾s cress 12706   +g cplusg 12782   .rcmulr 12783   Grpcgrp 13204  SubGrpcsubg 13375   Abelcabl 13493  Rngcrng 13566  SubRngcsubrng 13831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-addcom 7998  ax-addass 8000  ax-i2m1 8003  ax-0lt1 8004  ax-0id 8006  ax-rnegex 8007  ax-pre-ltirr 8010  ax-pre-lttrn 8012  ax-pre-ltadd 8014
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8082  df-mnf 8083  df-ltxr 8085  df-inn 9010  df-2 9068  df-3 9069  df-ndx 12708  df-slot 12709  df-base 12711  df-sets 12712  df-iress 12713  df-plusg 12795  df-mulr 12796  df-mgm 13060  df-sgrp 13106  df-grp 13207  df-subg 13378  df-cmn 13494  df-abl 13495  df-mgp 13555  df-rng 13567  df-subrng 13832
This theorem is referenced by:  opprsubrngg  13845  subrngintm  13846
  Copyright terms: Public domain W3C validator