ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubrng2 Unicode version

Theorem issubrng2 13557
Description: Characterize the subrings of a ring by closure properties. (Contributed by AV, 15-Feb-2025.)
Hypotheses
Ref Expression
issubrng2.b  |-  B  =  ( Base `  R
)
issubrng2.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
issubrng2  |-  ( R  e. Rng  ->  ( A  e.  (SubRng `  R )  <->  ( A  e.  (SubGrp `  R )  /\  A. x  e.  A  A. y  e.  A  (
x  .x.  y )  e.  A ) ) )
Distinct variable groups:    x, y, A   
x, R, y    x,  .x. , y
Allowed substitution hints:    B( x, y)

Proof of Theorem issubrng2
Dummy variables  v  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrngsubg 13551 . . 3  |-  ( A  e.  (SubRng `  R
)  ->  A  e.  (SubGrp `  R ) )
2 issubrng2.t . . . . . 6  |-  .x.  =  ( .r `  R )
32subrngmcl 13556 . . . . 5  |-  ( ( A  e.  (SubRng `  R )  /\  x  e.  A  /\  y  e.  A )  ->  (
x  .x.  y )  e.  A )
433expb 1206 . . . 4  |-  ( ( A  e.  (SubRng `  R )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( x  .x.  y )  e.  A
)
54ralrimivva 2572 . . 3  |-  ( A  e.  (SubRng `  R
)  ->  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
)
61, 5jca 306 . 2  |-  ( A  e.  (SubRng `  R
)  ->  ( A  e.  (SubGrp `  R )  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A ) )
7 simpl 109 . . . 4  |-  ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  R  e. Rng )
8 simprl 529 . . . . . 6  |-  ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  A  e.  (SubGrp `  R )
)
9 eqid 2189 . . . . . . 7  |-  ( Rs  A )  =  ( Rs  A )
109subgbas 13117 . . . . . 6  |-  ( A  e.  (SubGrp `  R
)  ->  A  =  ( Base `  ( Rs  A
) ) )
118, 10syl 14 . . . . 5  |-  ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  A  =  ( Base `  ( Rs  A ) ) )
12 eqidd 2190 . . . . . . 7  |-  ( A  e.  (SubGrp `  R
)  ->  ( Rs  A
)  =  ( Rs  A ) )
13 eqidd 2190 . . . . . . 7  |-  ( A  e.  (SubGrp `  R
)  ->  ( +g  `  R )  =  ( +g  `  R ) )
14 id 19 . . . . . . 7  |-  ( A  e.  (SubGrp `  R
)  ->  A  e.  (SubGrp `  R ) )
15 subgrcl 13118 . . . . . . 7  |-  ( A  e.  (SubGrp `  R
)  ->  R  e.  Grp )
1612, 13, 14, 15ressplusgd 12640 . . . . . 6  |-  ( A  e.  (SubGrp `  R
)  ->  ( +g  `  R )  =  ( +g  `  ( Rs  A ) ) )
178, 16syl 14 . . . . 5  |-  ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  ( +g  `  R )  =  ( +g  `  ( Rs  A ) ) )
189, 2ressmulrg 12656 . . . . . 6  |-  ( ( A  e.  (SubGrp `  R )  /\  R  e.  Grp )  ->  .x.  =  ( .r `  ( Rs  A ) ) )
198, 15, 18syl2anc2 412 . . . . 5  |-  ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  .x.  =  ( .r `  ( Rs  A ) ) )
20 rngabl 13289 . . . . . 6  |-  ( R  e. Rng  ->  R  e.  Abel )
219subgabl 13269 . . . . . 6  |-  ( ( R  e.  Abel  /\  A  e.  (SubGrp `  R )
)  ->  ( Rs  A
)  e.  Abel )
2220, 8, 21syl2an2r 595 . . . . 5  |-  ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  ( Rs  A )  e.  Abel )
23 simprr 531 . . . . . . 7  |-  ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
)
24 oveq1 5903 . . . . . . . . 9  |-  ( x  =  u  ->  (
x  .x.  y )  =  ( u  .x.  y ) )
2524eleq1d 2258 . . . . . . . 8  |-  ( x  =  u  ->  (
( x  .x.  y
)  e.  A  <->  ( u  .x.  y )  e.  A
) )
26 oveq2 5904 . . . . . . . . 9  |-  ( y  =  v  ->  (
u  .x.  y )  =  ( u  .x.  v ) )
2726eleq1d 2258 . . . . . . . 8  |-  ( y  =  v  ->  (
( u  .x.  y
)  e.  A  <->  ( u  .x.  v )  e.  A
) )
2825, 27rspc2v 2869 . . . . . . 7  |-  ( ( u  e.  A  /\  v  e.  A )  ->  ( A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A  ->  ( u  .x.  v
)  e.  A ) )
2923, 28syl5com 29 . . . . . 6  |-  ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  (
( u  e.  A  /\  v  e.  A
)  ->  ( u  .x.  v )  e.  A
) )
30293impib 1203 . . . . 5  |-  ( ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R )  /\  A. x  e.  A  A. y  e.  A  (
x  .x.  y )  e.  A ) )  /\  u  e.  A  /\  v  e.  A )  ->  ( u  .x.  v
)  e.  A )
31 issubrng2.b . . . . . . . . . . 11  |-  B  =  ( Base `  R
)
3231subgss 13113 . . . . . . . . . 10  |-  ( A  e.  (SubGrp `  R
)  ->  A  C_  B
)
338, 32syl 14 . . . . . . . . 9  |-  ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  A  C_  B )
3433sseld 3169 . . . . . . . 8  |-  ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  (
u  e.  A  ->  u  e.  B )
)
3533sseld 3169 . . . . . . . 8  |-  ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  (
v  e.  A  -> 
v  e.  B ) )
3633sseld 3169 . . . . . . . 8  |-  ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  (
w  e.  A  ->  w  e.  B )
)
3734, 35, 363anim123d 1330 . . . . . . 7  |-  ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  (
( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  ->  ( u  e.  B  /\  v  e.  B  /\  w  e.  B ) ) )
3837imp 124 . . . . . 6  |-  ( ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R )  /\  A. x  e.  A  A. y  e.  A  (
x  .x.  y )  e.  A ) )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
) )  ->  (
u  e.  B  /\  v  e.  B  /\  w  e.  B )
)
3931, 2rngass 13293 . . . . . . 7  |-  ( ( R  e. Rng  /\  (
u  e.  B  /\  v  e.  B  /\  w  e.  B )
)  ->  ( (
u  .x.  v )  .x.  w )  =  ( u  .x.  ( v 
.x.  w ) ) )
4039adantlr 477 . . . . . 6  |-  ( ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R )  /\  A. x  e.  A  A. y  e.  A  (
x  .x.  y )  e.  A ) )  /\  ( u  e.  B  /\  v  e.  B  /\  w  e.  B
) )  ->  (
( u  .x.  v
)  .x.  w )  =  ( u  .x.  ( v  .x.  w
) ) )
4138, 40syldan 282 . . . . 5  |-  ( ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R )  /\  A. x  e.  A  A. y  e.  A  (
x  .x.  y )  e.  A ) )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
) )  ->  (
( u  .x.  v
)  .x.  w )  =  ( u  .x.  ( v  .x.  w
) ) )
42 eqid 2189 . . . . . . . 8  |-  ( +g  `  R )  =  ( +g  `  R )
4331, 42, 2rngdi 13294 . . . . . . 7  |-  ( ( R  e. Rng  /\  (
u  e.  B  /\  v  e.  B  /\  w  e.  B )
)  ->  ( u  .x.  ( v ( +g  `  R ) w ) )  =  ( ( u  .x.  v ) ( +g  `  R
) ( u  .x.  w ) ) )
4443adantlr 477 . . . . . 6  |-  ( ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R )  /\  A. x  e.  A  A. y  e.  A  (
x  .x.  y )  e.  A ) )  /\  ( u  e.  B  /\  v  e.  B  /\  w  e.  B
) )  ->  (
u  .x.  ( v
( +g  `  R ) w ) )  =  ( ( u  .x.  v ) ( +g  `  R ) ( u 
.x.  w ) ) )
4538, 44syldan 282 . . . . 5  |-  ( ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R )  /\  A. x  e.  A  A. y  e.  A  (
x  .x.  y )  e.  A ) )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
) )  ->  (
u  .x.  ( v
( +g  `  R ) w ) )  =  ( ( u  .x.  v ) ( +g  `  R ) ( u 
.x.  w ) ) )
4631, 42, 2rngdir 13295 . . . . . . 7  |-  ( ( R  e. Rng  /\  (
u  e.  B  /\  v  e.  B  /\  w  e.  B )
)  ->  ( (
u ( +g  `  R
) v )  .x.  w )  =  ( ( u  .x.  w
) ( +g  `  R
) ( v  .x.  w ) ) )
4746adantlr 477 . . . . . 6  |-  ( ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R )  /\  A. x  e.  A  A. y  e.  A  (
x  .x.  y )  e.  A ) )  /\  ( u  e.  B  /\  v  e.  B  /\  w  e.  B
) )  ->  (
( u ( +g  `  R ) v ) 
.x.  w )  =  ( ( u  .x.  w ) ( +g  `  R ) ( v 
.x.  w ) ) )
4838, 47syldan 282 . . . . 5  |-  ( ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R )  /\  A. x  e.  A  A. y  e.  A  (
x  .x.  y )  e.  A ) )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
) )  ->  (
( u ( +g  `  R ) v ) 
.x.  w )  =  ( ( u  .x.  w ) ( +g  `  R ) ( v 
.x.  w ) ) )
4911, 17, 19, 22, 30, 41, 45, 48isrngd 13307 . . . 4  |-  ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  ( Rs  A )  e. Rng )
5031issubrng 13546 . . . 4  |-  ( A  e.  (SubRng `  R
)  <->  ( R  e. Rng  /\  ( Rs  A )  e. Rng  /\  A  C_  B ) )
517, 49, 33, 50syl3anbrc 1183 . . 3  |-  ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  A  e.  (SubRng `  R )
)
5251ex 115 . 2  |-  ( R  e. Rng  ->  ( ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
)  ->  A  e.  (SubRng `  R ) ) )
536, 52impbid2 143 1  |-  ( R  e. Rng  ->  ( A  e.  (SubRng `  R )  <->  ( A  e.  (SubGrp `  R )  /\  A. x  e.  A  A. y  e.  A  (
x  .x.  y )  e.  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2160   A.wral 2468    C_ wss 3144   ` cfv 5235  (class class class)co 5896   Basecbs 12512   ↾s cress 12513   +g cplusg 12589   .rcmulr 12590   Grpcgrp 12945  SubGrpcsubg 13106   Abelcabl 13224  Rngcrng 13286  SubRngcsubrng 13544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-addcom 7941  ax-addass 7943  ax-i2m1 7946  ax-0lt1 7947  ax-0id 7949  ax-rnegex 7950  ax-pre-ltirr 7953  ax-pre-lttrn 7955  ax-pre-ltadd 7957
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-fv 5243  df-ov 5899  df-oprab 5900  df-mpo 5901  df-pnf 8024  df-mnf 8025  df-ltxr 8027  df-inn 8950  df-2 9008  df-3 9009  df-ndx 12515  df-slot 12516  df-base 12518  df-sets 12519  df-iress 12520  df-plusg 12602  df-mulr 12603  df-mgm 12832  df-sgrp 12865  df-grp 12948  df-subg 13109  df-cmn 13225  df-abl 13226  df-mgp 13275  df-rng 13287  df-subrng 13545
This theorem is referenced by:  opprsubrngg  13558  subrngintm  13559
  Copyright terms: Public domain W3C validator