ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubrng2 Unicode version

Theorem issubrng2 14005
Description: Characterize the subrings of a ring by closure properties. (Contributed by AV, 15-Feb-2025.)
Hypotheses
Ref Expression
issubrng2.b  |-  B  =  ( Base `  R
)
issubrng2.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
issubrng2  |-  ( R  e. Rng  ->  ( A  e.  (SubRng `  R )  <->  ( A  e.  (SubGrp `  R )  /\  A. x  e.  A  A. y  e.  A  (
x  .x.  y )  e.  A ) ) )
Distinct variable groups:    x, y, A   
x, R, y    x,  .x. , y
Allowed substitution hints:    B( x, y)

Proof of Theorem issubrng2
Dummy variables  v  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrngsubg 13999 . . 3  |-  ( A  e.  (SubRng `  R
)  ->  A  e.  (SubGrp `  R ) )
2 issubrng2.t . . . . . 6  |-  .x.  =  ( .r `  R )
32subrngmcl 14004 . . . . 5  |-  ( ( A  e.  (SubRng `  R )  /\  x  e.  A  /\  y  e.  A )  ->  (
x  .x.  y )  e.  A )
433expb 1207 . . . 4  |-  ( ( A  e.  (SubRng `  R )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( x  .x.  y )  e.  A
)
54ralrimivva 2588 . . 3  |-  ( A  e.  (SubRng `  R
)  ->  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
)
61, 5jca 306 . 2  |-  ( A  e.  (SubRng `  R
)  ->  ( A  e.  (SubGrp `  R )  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A ) )
7 simpl 109 . . . 4  |-  ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  R  e. Rng )
8 simprl 529 . . . . . 6  |-  ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  A  e.  (SubGrp `  R )
)
9 eqid 2205 . . . . . . 7  |-  ( Rs  A )  =  ( Rs  A )
109subgbas 13547 . . . . . 6  |-  ( A  e.  (SubGrp `  R
)  ->  A  =  ( Base `  ( Rs  A
) ) )
118, 10syl 14 . . . . 5  |-  ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  A  =  ( Base `  ( Rs  A ) ) )
12 eqidd 2206 . . . . . . 7  |-  ( A  e.  (SubGrp `  R
)  ->  ( Rs  A
)  =  ( Rs  A ) )
13 eqidd 2206 . . . . . . 7  |-  ( A  e.  (SubGrp `  R
)  ->  ( +g  `  R )  =  ( +g  `  R ) )
14 id 19 . . . . . . 7  |-  ( A  e.  (SubGrp `  R
)  ->  A  e.  (SubGrp `  R ) )
15 subgrcl 13548 . . . . . . 7  |-  ( A  e.  (SubGrp `  R
)  ->  R  e.  Grp )
1612, 13, 14, 15ressplusgd 12994 . . . . . 6  |-  ( A  e.  (SubGrp `  R
)  ->  ( +g  `  R )  =  ( +g  `  ( Rs  A ) ) )
178, 16syl 14 . . . . 5  |-  ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  ( +g  `  R )  =  ( +g  `  ( Rs  A ) ) )
189, 2ressmulrg 13010 . . . . . 6  |-  ( ( A  e.  (SubGrp `  R )  /\  R  e.  Grp )  ->  .x.  =  ( .r `  ( Rs  A ) ) )
198, 15, 18syl2anc2 412 . . . . 5  |-  ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  .x.  =  ( .r `  ( Rs  A ) ) )
20 rngabl 13730 . . . . . 6  |-  ( R  e. Rng  ->  R  e.  Abel )
219subgabl 13701 . . . . . 6  |-  ( ( R  e.  Abel  /\  A  e.  (SubGrp `  R )
)  ->  ( Rs  A
)  e.  Abel )
2220, 8, 21syl2an2r 595 . . . . 5  |-  ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  ( Rs  A )  e.  Abel )
23 simprr 531 . . . . . . 7  |-  ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
)
24 oveq1 5953 . . . . . . . . 9  |-  ( x  =  u  ->  (
x  .x.  y )  =  ( u  .x.  y ) )
2524eleq1d 2274 . . . . . . . 8  |-  ( x  =  u  ->  (
( x  .x.  y
)  e.  A  <->  ( u  .x.  y )  e.  A
) )
26 oveq2 5954 . . . . . . . . 9  |-  ( y  =  v  ->  (
u  .x.  y )  =  ( u  .x.  v ) )
2726eleq1d 2274 . . . . . . . 8  |-  ( y  =  v  ->  (
( u  .x.  y
)  e.  A  <->  ( u  .x.  v )  e.  A
) )
2825, 27rspc2v 2890 . . . . . . 7  |-  ( ( u  e.  A  /\  v  e.  A )  ->  ( A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A  ->  ( u  .x.  v
)  e.  A ) )
2923, 28syl5com 29 . . . . . 6  |-  ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  (
( u  e.  A  /\  v  e.  A
)  ->  ( u  .x.  v )  e.  A
) )
30293impib 1204 . . . . 5  |-  ( ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R )  /\  A. x  e.  A  A. y  e.  A  (
x  .x.  y )  e.  A ) )  /\  u  e.  A  /\  v  e.  A )  ->  ( u  .x.  v
)  e.  A )
31 issubrng2.b . . . . . . . . . . 11  |-  B  =  ( Base `  R
)
3231subgss 13543 . . . . . . . . . 10  |-  ( A  e.  (SubGrp `  R
)  ->  A  C_  B
)
338, 32syl 14 . . . . . . . . 9  |-  ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  A  C_  B )
3433sseld 3192 . . . . . . . 8  |-  ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  (
u  e.  A  ->  u  e.  B )
)
3533sseld 3192 . . . . . . . 8  |-  ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  (
v  e.  A  -> 
v  e.  B ) )
3633sseld 3192 . . . . . . . 8  |-  ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  (
w  e.  A  ->  w  e.  B )
)
3734, 35, 363anim123d 1332 . . . . . . 7  |-  ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  (
( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  ->  ( u  e.  B  /\  v  e.  B  /\  w  e.  B ) ) )
3837imp 124 . . . . . 6  |-  ( ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R )  /\  A. x  e.  A  A. y  e.  A  (
x  .x.  y )  e.  A ) )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
) )  ->  (
u  e.  B  /\  v  e.  B  /\  w  e.  B )
)
3931, 2rngass 13734 . . . . . . 7  |-  ( ( R  e. Rng  /\  (
u  e.  B  /\  v  e.  B  /\  w  e.  B )
)  ->  ( (
u  .x.  v )  .x.  w )  =  ( u  .x.  ( v 
.x.  w ) ) )
4039adantlr 477 . . . . . 6  |-  ( ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R )  /\  A. x  e.  A  A. y  e.  A  (
x  .x.  y )  e.  A ) )  /\  ( u  e.  B  /\  v  e.  B  /\  w  e.  B
) )  ->  (
( u  .x.  v
)  .x.  w )  =  ( u  .x.  ( v  .x.  w
) ) )
4138, 40syldan 282 . . . . 5  |-  ( ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R )  /\  A. x  e.  A  A. y  e.  A  (
x  .x.  y )  e.  A ) )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
) )  ->  (
( u  .x.  v
)  .x.  w )  =  ( u  .x.  ( v  .x.  w
) ) )
42 eqid 2205 . . . . . . . 8  |-  ( +g  `  R )  =  ( +g  `  R )
4331, 42, 2rngdi 13735 . . . . . . 7  |-  ( ( R  e. Rng  /\  (
u  e.  B  /\  v  e.  B  /\  w  e.  B )
)  ->  ( u  .x.  ( v ( +g  `  R ) w ) )  =  ( ( u  .x.  v ) ( +g  `  R
) ( u  .x.  w ) ) )
4443adantlr 477 . . . . . 6  |-  ( ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R )  /\  A. x  e.  A  A. y  e.  A  (
x  .x.  y )  e.  A ) )  /\  ( u  e.  B  /\  v  e.  B  /\  w  e.  B
) )  ->  (
u  .x.  ( v
( +g  `  R ) w ) )  =  ( ( u  .x.  v ) ( +g  `  R ) ( u 
.x.  w ) ) )
4538, 44syldan 282 . . . . 5  |-  ( ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R )  /\  A. x  e.  A  A. y  e.  A  (
x  .x.  y )  e.  A ) )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
) )  ->  (
u  .x.  ( v
( +g  `  R ) w ) )  =  ( ( u  .x.  v ) ( +g  `  R ) ( u 
.x.  w ) ) )
4631, 42, 2rngdir 13736 . . . . . . 7  |-  ( ( R  e. Rng  /\  (
u  e.  B  /\  v  e.  B  /\  w  e.  B )
)  ->  ( (
u ( +g  `  R
) v )  .x.  w )  =  ( ( u  .x.  w
) ( +g  `  R
) ( v  .x.  w ) ) )
4746adantlr 477 . . . . . 6  |-  ( ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R )  /\  A. x  e.  A  A. y  e.  A  (
x  .x.  y )  e.  A ) )  /\  ( u  e.  B  /\  v  e.  B  /\  w  e.  B
) )  ->  (
( u ( +g  `  R ) v ) 
.x.  w )  =  ( ( u  .x.  w ) ( +g  `  R ) ( v 
.x.  w ) ) )
4838, 47syldan 282 . . . . 5  |-  ( ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R )  /\  A. x  e.  A  A. y  e.  A  (
x  .x.  y )  e.  A ) )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
) )  ->  (
( u ( +g  `  R ) v ) 
.x.  w )  =  ( ( u  .x.  w ) ( +g  `  R ) ( v 
.x.  w ) ) )
4911, 17, 19, 22, 30, 41, 45, 48isrngd 13748 . . . 4  |-  ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  ( Rs  A )  e. Rng )
5031issubrng 13994 . . . 4  |-  ( A  e.  (SubRng `  R
)  <->  ( R  e. Rng  /\  ( Rs  A )  e. Rng  /\  A  C_  B ) )
517, 49, 33, 50syl3anbrc 1184 . . 3  |-  ( ( R  e. Rng  /\  ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
) )  ->  A  e.  (SubRng `  R )
)
5251ex 115 . 2  |-  ( R  e. Rng  ->  ( ( A  e.  (SubGrp `  R
)  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A
)  ->  A  e.  (SubRng `  R ) ) )
536, 52impbid2 143 1  |-  ( R  e. Rng  ->  ( A  e.  (SubRng `  R )  <->  ( A  e.  (SubGrp `  R )  /\  A. x  e.  A  A. y  e.  A  (
x  .x.  y )  e.  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   A.wral 2484    C_ wss 3166   ` cfv 5272  (class class class)co 5946   Basecbs 12865   ↾s cress 12866   +g cplusg 12942   .rcmulr 12943   Grpcgrp 13365  SubGrpcsubg 13536   Abelcabl 13654  Rngcrng 13727  SubRngcsubrng 13992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-pre-ltirr 8039  ax-pre-lttrn 8041  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-pnf 8111  df-mnf 8112  df-ltxr 8114  df-inn 9039  df-2 9097  df-3 9098  df-ndx 12868  df-slot 12869  df-base 12871  df-sets 12872  df-iress 12873  df-plusg 12955  df-mulr 12956  df-mgm 13221  df-sgrp 13267  df-grp 13368  df-subg 13539  df-cmn 13655  df-abl 13656  df-mgp 13716  df-rng 13728  df-subrng 13993
This theorem is referenced by:  opprsubrngg  14006  subrngintm  14007
  Copyright terms: Public domain W3C validator