ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rngsubdi Unicode version

Theorem rngsubdi 13302
Description: Ring multiplication distributes over subtraction. (subdi 8371 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) Generalization of ringsubdi 13405. (Revised by AV, 23-Feb-2025.)
Hypotheses
Ref Expression
rngsubdi.b  |-  B  =  ( Base `  R
)
rngsubdi.t  |-  .x.  =  ( .r `  R )
rngsubdi.m  |-  .-  =  ( -g `  R )
rngsubdi.r  |-  ( ph  ->  R  e. Rng )
rngsubdi.x  |-  ( ph  ->  X  e.  B )
rngsubdi.y  |-  ( ph  ->  Y  e.  B )
rngsubdi.z  |-  ( ph  ->  Z  e.  B )
Assertion
Ref Expression
rngsubdi  |-  ( ph  ->  ( X  .x.  ( Y  .-  Z ) )  =  ( ( X 
.x.  Y )  .-  ( X  .x.  Z ) ) )

Proof of Theorem rngsubdi
StepHypRef Expression
1 rngsubdi.r . . . 4  |-  ( ph  ->  R  e. Rng )
2 rngsubdi.x . . . 4  |-  ( ph  ->  X  e.  B )
3 rngsubdi.y . . . 4  |-  ( ph  ->  Y  e.  B )
4 rngsubdi.b . . . . 5  |-  B  =  ( Base `  R
)
5 eqid 2189 . . . . 5  |-  ( invg `  R )  =  ( invg `  R )
6 rnggrp 13289 . . . . . 6  |-  ( R  e. Rng  ->  R  e.  Grp )
71, 6syl 14 . . . . 5  |-  ( ph  ->  R  e.  Grp )
8 rngsubdi.z . . . . 5  |-  ( ph  ->  Z  e.  B )
94, 5, 7, 8grpinvcld 12990 . . . 4  |-  ( ph  ->  ( ( invg `  R ) `  Z
)  e.  B )
10 eqid 2189 . . . . 5  |-  ( +g  `  R )  =  ( +g  `  R )
11 rngsubdi.t . . . . 5  |-  .x.  =  ( .r `  R )
124, 10, 11rngdi 13291 . . . 4  |-  ( ( R  e. Rng  /\  ( X  e.  B  /\  Y  e.  B  /\  ( ( invg `  R ) `  Z
)  e.  B ) )  ->  ( X  .x.  ( Y ( +g  `  R ) ( ( invg `  R
) `  Z )
) )  =  ( ( X  .x.  Y
) ( +g  `  R
) ( X  .x.  ( ( invg `  R ) `  Z
) ) ) )
131, 2, 3, 9, 12syl13anc 1251 . . 3  |-  ( ph  ->  ( X  .x.  ( Y ( +g  `  R
) ( ( invg `  R ) `
 Z ) ) )  =  ( ( X  .x.  Y ) ( +g  `  R
) ( X  .x.  ( ( invg `  R ) `  Z
) ) ) )
144, 11, 5, 1, 2, 8rngmneg2 13299 . . . 4  |-  ( ph  ->  ( X  .x.  (
( invg `  R ) `  Z
) )  =  ( ( invg `  R ) `  ( X  .x.  Z ) ) )
1514oveq2d 5911 . . 3  |-  ( ph  ->  ( ( X  .x.  Y ) ( +g  `  R ) ( X 
.x.  ( ( invg `  R ) `
 Z ) ) )  =  ( ( X  .x.  Y ) ( +g  `  R
) ( ( invg `  R ) `
 ( X  .x.  Z ) ) ) )
1613, 15eqtrd 2222 . 2  |-  ( ph  ->  ( X  .x.  ( Y ( +g  `  R
) ( ( invg `  R ) `
 Z ) ) )  =  ( ( X  .x.  Y ) ( +g  `  R
) ( ( invg `  R ) `
 ( X  .x.  Z ) ) ) )
17 rngsubdi.m . . . . 5  |-  .-  =  ( -g `  R )
184, 10, 5, 17grpsubval 12987 . . . 4  |-  ( ( Y  e.  B  /\  Z  e.  B )  ->  ( Y  .-  Z
)  =  ( Y ( +g  `  R
) ( ( invg `  R ) `
 Z ) ) )
193, 8, 18syl2anc 411 . . 3  |-  ( ph  ->  ( Y  .-  Z
)  =  ( Y ( +g  `  R
) ( ( invg `  R ) `
 Z ) ) )
2019oveq2d 5911 . 2  |-  ( ph  ->  ( X  .x.  ( Y  .-  Z ) )  =  ( X  .x.  ( Y ( +g  `  R
) ( ( invg `  R ) `
 Z ) ) ) )
214, 11rngcl 13295 . . . 4  |-  ( ( R  e. Rng  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .x.  Y )  e.  B )
221, 2, 3, 21syl3anc 1249 . . 3  |-  ( ph  ->  ( X  .x.  Y
)  e.  B )
234, 11rngcl 13295 . . . 4  |-  ( ( R  e. Rng  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  .x.  Z )  e.  B )
241, 2, 8, 23syl3anc 1249 . . 3  |-  ( ph  ->  ( X  .x.  Z
)  e.  B )
254, 10, 5, 17grpsubval 12987 . . 3  |-  ( ( ( X  .x.  Y
)  e.  B  /\  ( X  .x.  Z )  e.  B )  -> 
( ( X  .x.  Y )  .-  ( X  .x.  Z ) )  =  ( ( X 
.x.  Y ) ( +g  `  R ) ( ( invg `  R ) `  ( X  .x.  Z ) ) ) )
2622, 24, 25syl2anc 411 . 2  |-  ( ph  ->  ( ( X  .x.  Y )  .-  ( X  .x.  Z ) )  =  ( ( X 
.x.  Y ) ( +g  `  R ) ( ( invg `  R ) `  ( X  .x.  Z ) ) ) )
2716, 20, 263eqtr4d 2232 1  |-  ( ph  ->  ( X  .x.  ( Y  .-  Z ) )  =  ( ( X 
.x.  Y )  .-  ( X  .x.  Z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2160   ` cfv 5235  (class class class)co 5895   Basecbs 12511   +g cplusg 12586   .rcmulr 12587   Grpcgrp 12942   invgcminusg 12943   -gcsg 12944  Rngcrng 13283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7931  ax-resscn 7932  ax-1cn 7933  ax-1re 7934  ax-icn 7935  ax-addcl 7936  ax-addrcl 7937  ax-mulcl 7938  ax-addcom 7940  ax-addass 7942  ax-i2m1 7945  ax-0lt1 7946  ax-0id 7948  ax-rnegex 7949  ax-pre-ltirr 7952  ax-pre-ltadd 7956
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-1st 6164  df-2nd 6165  df-pnf 8023  df-mnf 8024  df-ltxr 8026  df-inn 8949  df-2 9007  df-3 9008  df-ndx 12514  df-slot 12515  df-base 12517  df-sets 12518  df-plusg 12599  df-mulr 12600  df-0g 12760  df-mgm 12829  df-sgrp 12862  df-mnd 12875  df-grp 12945  df-minusg 12946  df-sbg 12947  df-abl 13223  df-mgp 13272  df-rng 13284
This theorem is referenced by:  2idlcpblrng  13835
  Copyright terms: Public domain W3C validator