| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > rngdir | Unicode version | ||
| Description: Distributive law for the multiplication operation of a non-unital ring (right-distributivity). (Contributed by AV, 17-Apr-2020.) | 
| Ref | Expression | 
|---|---|
| rngdi.b | 
 | 
| rngdi.p | 
 | 
| rngdi.t | 
 | 
| Ref | Expression | 
|---|---|
| rngdir | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rngdi.b | 
. . . 4
 | |
| 2 | eqid 2196 | 
. . . 4
 | |
| 3 | rngdi.p | 
. . . 4
 | |
| 4 | rngdi.t | 
. . . 4
 | |
| 5 | 1, 2, 3, 4 | isrng 13490 | 
. . 3
 | 
| 6 | oveq1 5929 | 
. . . . . . . 8
 | |
| 7 | oveq1 5929 | 
. . . . . . . . 9
 | |
| 8 | oveq1 5929 | 
. . . . . . . . 9
 | |
| 9 | 7, 8 | oveq12d 5940 | 
. . . . . . . 8
 | 
| 10 | 6, 9 | eqeq12d 2211 | 
. . . . . . 7
 | 
| 11 | oveq1 5929 | 
. . . . . . . . 9
 | |
| 12 | 11 | oveq1d 5937 | 
. . . . . . . 8
 | 
| 13 | 8 | oveq1d 5937 | 
. . . . . . . 8
 | 
| 14 | 12, 13 | eqeq12d 2211 | 
. . . . . . 7
 | 
| 15 | 10, 14 | anbi12d 473 | 
. . . . . 6
 | 
| 16 | oveq1 5929 | 
. . . . . . . . 9
 | |
| 17 | 16 | oveq2d 5938 | 
. . . . . . . 8
 | 
| 18 | oveq2 5930 | 
. . . . . . . . 9
 | |
| 19 | 18 | oveq1d 5937 | 
. . . . . . . 8
 | 
| 20 | 17, 19 | eqeq12d 2211 | 
. . . . . . 7
 | 
| 21 | oveq2 5930 | 
. . . . . . . . 9
 | |
| 22 | 21 | oveq1d 5937 | 
. . . . . . . 8
 | 
| 23 | oveq1 5929 | 
. . . . . . . . 9
 | |
| 24 | 23 | oveq2d 5938 | 
. . . . . . . 8
 | 
| 25 | 22, 24 | eqeq12d 2211 | 
. . . . . . 7
 | 
| 26 | 20, 25 | anbi12d 473 | 
. . . . . 6
 | 
| 27 | oveq2 5930 | 
. . . . . . . . 9
 | |
| 28 | 27 | oveq2d 5938 | 
. . . . . . . 8
 | 
| 29 | oveq2 5930 | 
. . . . . . . . 9
 | |
| 30 | 29 | oveq2d 5938 | 
. . . . . . . 8
 | 
| 31 | 28, 30 | eqeq12d 2211 | 
. . . . . . 7
 | 
| 32 | oveq2 5930 | 
. . . . . . . 8
 | |
| 33 | oveq2 5930 | 
. . . . . . . . 9
 | |
| 34 | 29, 33 | oveq12d 5940 | 
. . . . . . . 8
 | 
| 35 | 32, 34 | eqeq12d 2211 | 
. . . . . . 7
 | 
| 36 | 31, 35 | anbi12d 473 | 
. . . . . 6
 | 
| 37 | 15, 26, 36 | rspc3v 2884 | 
. . . . 5
 | 
| 38 | simpr 110 | 
. . . . 5
 | |
| 39 | 37, 38 | syl6com 35 | 
. . . 4
 | 
| 40 | 39 | 3ad2ant3 1022 | 
. . 3
 | 
| 41 | 5, 40 | sylbi 121 | 
. 2
 | 
| 42 | 41 | imp 124 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-ov 5925 df-inn 8991 df-2 9049 df-3 9050 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-mulr 12769 df-rng 13489 | 
| This theorem is referenced by: rnglz 13501 rngmneg1 13503 rngsubdir 13508 rngressid 13510 imasrng 13512 opprrng 13633 issubrng2 13766 rnglidlrng 14054 | 
| Copyright terms: Public domain | W3C validator |