| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rngdir | Unicode version | ||
| Description: Distributive law for the multiplication operation of a non-unital ring (right-distributivity). (Contributed by AV, 17-Apr-2020.) |
| Ref | Expression |
|---|---|
| rngdi.b |
|
| rngdi.p |
|
| rngdi.t |
|
| Ref | Expression |
|---|---|
| rngdir |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngdi.b |
. . . 4
| |
| 2 | eqid 2229 |
. . . 4
| |
| 3 | rngdi.p |
. . . 4
| |
| 4 | rngdi.t |
. . . 4
| |
| 5 | 1, 2, 3, 4 | isrng 13897 |
. . 3
|
| 6 | oveq1 6008 |
. . . . . . . 8
| |
| 7 | oveq1 6008 |
. . . . . . . . 9
| |
| 8 | oveq1 6008 |
. . . . . . . . 9
| |
| 9 | 7, 8 | oveq12d 6019 |
. . . . . . . 8
|
| 10 | 6, 9 | eqeq12d 2244 |
. . . . . . 7
|
| 11 | oveq1 6008 |
. . . . . . . . 9
| |
| 12 | 11 | oveq1d 6016 |
. . . . . . . 8
|
| 13 | 8 | oveq1d 6016 |
. . . . . . . 8
|
| 14 | 12, 13 | eqeq12d 2244 |
. . . . . . 7
|
| 15 | 10, 14 | anbi12d 473 |
. . . . . 6
|
| 16 | oveq1 6008 |
. . . . . . . . 9
| |
| 17 | 16 | oveq2d 6017 |
. . . . . . . 8
|
| 18 | oveq2 6009 |
. . . . . . . . 9
| |
| 19 | 18 | oveq1d 6016 |
. . . . . . . 8
|
| 20 | 17, 19 | eqeq12d 2244 |
. . . . . . 7
|
| 21 | oveq2 6009 |
. . . . . . . . 9
| |
| 22 | 21 | oveq1d 6016 |
. . . . . . . 8
|
| 23 | oveq1 6008 |
. . . . . . . . 9
| |
| 24 | 23 | oveq2d 6017 |
. . . . . . . 8
|
| 25 | 22, 24 | eqeq12d 2244 |
. . . . . . 7
|
| 26 | 20, 25 | anbi12d 473 |
. . . . . 6
|
| 27 | oveq2 6009 |
. . . . . . . . 9
| |
| 28 | 27 | oveq2d 6017 |
. . . . . . . 8
|
| 29 | oveq2 6009 |
. . . . . . . . 9
| |
| 30 | 29 | oveq2d 6017 |
. . . . . . . 8
|
| 31 | 28, 30 | eqeq12d 2244 |
. . . . . . 7
|
| 32 | oveq2 6009 |
. . . . . . . 8
| |
| 33 | oveq2 6009 |
. . . . . . . . 9
| |
| 34 | 29, 33 | oveq12d 6019 |
. . . . . . . 8
|
| 35 | 32, 34 | eqeq12d 2244 |
. . . . . . 7
|
| 36 | 31, 35 | anbi12d 473 |
. . . . . 6
|
| 37 | 15, 26, 36 | rspc3v 2923 |
. . . . 5
|
| 38 | simpr 110 |
. . . . 5
| |
| 39 | 37, 38 | syl6com 35 |
. . . 4
|
| 40 | 39 | 3ad2ant3 1044 |
. . 3
|
| 41 | 5, 40 | sylbi 121 |
. 2
|
| 42 | 41 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-ov 6004 df-inn 9111 df-2 9169 df-3 9170 df-ndx 13035 df-slot 13036 df-base 13038 df-plusg 13123 df-mulr 13124 df-rng 13896 |
| This theorem is referenced by: rnglz 13908 rngmneg1 13910 rngsubdir 13915 rngressid 13917 imasrng 13919 opprrng 14040 issubrng2 14174 rnglidlrng 14462 |
| Copyright terms: Public domain | W3C validator |