ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rngressid Unicode version

Theorem rngressid 13716
Description: A non-unital ring restricted to its base set is a non-unital ring. It will usually be the original non-unital ring exactly, of course, but to show that needs additional conditions such as those in strressid 12903. (Contributed by Jim Kingdon, 5-May-2025.)
Hypothesis
Ref Expression
rngressid.b  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
rngressid  |-  ( G  e. Rng  ->  ( Gs  B )  e. Rng )

Proof of Theorem rngressid
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2206 . . 3  |-  ( G  e. Rng  ->  ( Gs  B )  =  ( Gs  B ) )
2 rngressid.b . . . 4  |-  B  =  ( Base `  G
)
32a1i 9 . . 3  |-  ( G  e. Rng  ->  B  =  (
Base `  G )
)
4 id 19 . . 3  |-  ( G  e. Rng  ->  G  e. Rng )
5 ssidd 3214 . . 3  |-  ( G  e. Rng  ->  B  C_  B
)
61, 3, 4, 5ressbas2d 12900 . 2  |-  ( G  e. Rng  ->  B  =  (
Base `  ( Gs  B
) ) )
7 eqidd 2206 . . 3  |-  ( G  e. Rng  ->  ( +g  `  G
)  =  ( +g  `  G ) )
8 basfn 12890 . . . . 5  |-  Base  Fn  _V
9 elex 2783 . . . . 5  |-  ( G  e. Rng  ->  G  e.  _V )
10 funfvex 5593 . . . . . 6  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
1110funfni 5376 . . . . 5  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
128, 9, 11sylancr 414 . . . 4  |-  ( G  e. Rng  ->  ( Base `  G
)  e.  _V )
132, 12eqeltrid 2292 . . 3  |-  ( G  e. Rng  ->  B  e.  _V )
141, 7, 13, 9ressplusgd 12961 . 2  |-  ( G  e. Rng  ->  ( +g  `  G
)  =  ( +g  `  ( Gs  B ) ) )
15 eqid 2205 . . . 4  |-  ( Gs  B )  =  ( Gs  B )
16 eqid 2205 . . . 4  |-  ( .r
`  G )  =  ( .r `  G
)
1715, 16ressmulrg 12977 . . 3  |-  ( ( B  e.  _V  /\  G  e. Rng )  ->  ( .r `  G )  =  ( .r `  ( Gs  B ) ) )
1813, 17mpancom 422 . 2  |-  ( G  e. Rng  ->  ( .r `  G )  =  ( .r `  ( Gs  B ) ) )
19 rngabl 13697 . . 3  |-  ( G  e. Rng  ->  G  e.  Abel )
202ablressid 13671 . . 3  |-  ( G  e.  Abel  ->  ( Gs  B )  e.  Abel )
2119, 20syl 14 . 2  |-  ( G  e. Rng  ->  ( Gs  B )  e.  Abel )
222, 16rngcl 13706 . 2  |-  ( ( G  e. Rng  /\  x  e.  B  /\  y  e.  B )  ->  (
x ( .r `  G ) y )  e.  B )
232, 16rngass 13701 . 2  |-  ( ( G  e. Rng  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( (
x ( .r `  G ) y ) ( .r `  G
) z )  =  ( x ( .r
`  G ) ( y ( .r `  G ) z ) ) )
24 eqid 2205 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
252, 24, 16rngdi 13702 . 2  |-  ( ( G  e. Rng  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( x
( .r `  G
) ( y ( +g  `  G ) z ) )  =  ( ( x ( .r `  G ) y ) ( +g  `  G ) ( x ( .r `  G
) z ) ) )
262, 24, 16rngdir 13703 . 2  |-  ( ( G  e. Rng  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( (
x ( +g  `  G
) y ) ( .r `  G ) z )  =  ( ( x ( .r
`  G ) z ) ( +g  `  G
) ( y ( .r `  G ) z ) ) )
276, 14, 18, 21, 22, 23, 25, 26isrngd 13715 1  |-  ( G  e. Rng  ->  ( Gs  B )  e. Rng )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   _Vcvv 2772    Fn wfn 5266   ` cfv 5271  (class class class)co 5944   Basecbs 12832   ↾s cress 12833   +g cplusg 12909   .rcmulr 12910   Abelcabl 13621  Rngcrng 13694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-iress 12840  df-plusg 12922  df-mulr 12923  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336  df-cmn 13622  df-abl 13623  df-mgp 13683  df-rng 13695
This theorem is referenced by:  subrngid  13963
  Copyright terms: Public domain W3C validator