ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rngressid Unicode version

Theorem rngressid 13831
Description: A non-unital ring restricted to its base set is a non-unital ring. It will usually be the original non-unital ring exactly, of course, but to show that needs additional conditions such as those in strressid 13018. (Contributed by Jim Kingdon, 5-May-2025.)
Hypothesis
Ref Expression
rngressid.b  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
rngressid  |-  ( G  e. Rng  ->  ( Gs  B )  e. Rng )

Proof of Theorem rngressid
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2208 . . 3  |-  ( G  e. Rng  ->  ( Gs  B )  =  ( Gs  B ) )
2 rngressid.b . . . 4  |-  B  =  ( Base `  G
)
32a1i 9 . . 3  |-  ( G  e. Rng  ->  B  =  (
Base `  G )
)
4 id 19 . . 3  |-  ( G  e. Rng  ->  G  e. Rng )
5 ssidd 3222 . . 3  |-  ( G  e. Rng  ->  B  C_  B
)
61, 3, 4, 5ressbas2d 13015 . 2  |-  ( G  e. Rng  ->  B  =  (
Base `  ( Gs  B
) ) )
7 eqidd 2208 . . 3  |-  ( G  e. Rng  ->  ( +g  `  G
)  =  ( +g  `  G ) )
8 basfn 13005 . . . . 5  |-  Base  Fn  _V
9 elex 2788 . . . . 5  |-  ( G  e. Rng  ->  G  e.  _V )
10 funfvex 5616 . . . . . 6  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
1110funfni 5395 . . . . 5  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
128, 9, 11sylancr 414 . . . 4  |-  ( G  e. Rng  ->  ( Base `  G
)  e.  _V )
132, 12eqeltrid 2294 . . 3  |-  ( G  e. Rng  ->  B  e.  _V )
141, 7, 13, 9ressplusgd 13076 . 2  |-  ( G  e. Rng  ->  ( +g  `  G
)  =  ( +g  `  ( Gs  B ) ) )
15 eqid 2207 . . . 4  |-  ( Gs  B )  =  ( Gs  B )
16 eqid 2207 . . . 4  |-  ( .r
`  G )  =  ( .r `  G
)
1715, 16ressmulrg 13092 . . 3  |-  ( ( B  e.  _V  /\  G  e. Rng )  ->  ( .r `  G )  =  ( .r `  ( Gs  B ) ) )
1813, 17mpancom 422 . 2  |-  ( G  e. Rng  ->  ( .r `  G )  =  ( .r `  ( Gs  B ) ) )
19 rngabl 13812 . . 3  |-  ( G  e. Rng  ->  G  e.  Abel )
202ablressid 13786 . . 3  |-  ( G  e.  Abel  ->  ( Gs  B )  e.  Abel )
2119, 20syl 14 . 2  |-  ( G  e. Rng  ->  ( Gs  B )  e.  Abel )
222, 16rngcl 13821 . 2  |-  ( ( G  e. Rng  /\  x  e.  B  /\  y  e.  B )  ->  (
x ( .r `  G ) y )  e.  B )
232, 16rngass 13816 . 2  |-  ( ( G  e. Rng  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( (
x ( .r `  G ) y ) ( .r `  G
) z )  =  ( x ( .r
`  G ) ( y ( .r `  G ) z ) ) )
24 eqid 2207 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
252, 24, 16rngdi 13817 . 2  |-  ( ( G  e. Rng  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( x
( .r `  G
) ( y ( +g  `  G ) z ) )  =  ( ( x ( .r `  G ) y ) ( +g  `  G ) ( x ( .r `  G
) z ) ) )
262, 24, 16rngdir 13818 . 2  |-  ( ( G  e. Rng  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( (
x ( +g  `  G
) y ) ( .r `  G ) z )  =  ( ( x ( .r
`  G ) z ) ( +g  `  G
) ( y ( .r `  G ) z ) ) )
276, 14, 18, 21, 22, 23, 25, 26isrngd 13830 1  |-  ( G  e. Rng  ->  ( Gs  B )  e. Rng )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   _Vcvv 2776    Fn wfn 5285   ` cfv 5290  (class class class)co 5967   Basecbs 12947   ↾s cress 12948   +g cplusg 13024   .rcmulr 13025   Abelcabl 13736  Rngcrng 13809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-iress 12955  df-plusg 13037  df-mulr 13038  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-minusg 13451  df-cmn 13737  df-abl 13738  df-mgp 13798  df-rng 13810
This theorem is referenced by:  subrngid  14078
  Copyright terms: Public domain W3C validator