ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rngressid Unicode version

Theorem rngressid 13520
Description: A non-unital ring restricted to its base set is a non-unital ring. It will usually be the original non-unital ring exactly, of course, but to show that needs additional conditions such as those in strressid 12759. (Contributed by Jim Kingdon, 5-May-2025.)
Hypothesis
Ref Expression
rngressid.b  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
rngressid  |-  ( G  e. Rng  ->  ( Gs  B )  e. Rng )

Proof of Theorem rngressid
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2197 . . 3  |-  ( G  e. Rng  ->  ( Gs  B )  =  ( Gs  B ) )
2 rngressid.b . . . 4  |-  B  =  ( Base `  G
)
32a1i 9 . . 3  |-  ( G  e. Rng  ->  B  =  (
Base `  G )
)
4 id 19 . . 3  |-  ( G  e. Rng  ->  G  e. Rng )
5 ssidd 3205 . . 3  |-  ( G  e. Rng  ->  B  C_  B
)
61, 3, 4, 5ressbas2d 12756 . 2  |-  ( G  e. Rng  ->  B  =  (
Base `  ( Gs  B
) ) )
7 eqidd 2197 . . 3  |-  ( G  e. Rng  ->  ( +g  `  G
)  =  ( +g  `  G ) )
8 basfn 12746 . . . . 5  |-  Base  Fn  _V
9 elex 2774 . . . . 5  |-  ( G  e. Rng  ->  G  e.  _V )
10 funfvex 5576 . . . . . 6  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
1110funfni 5359 . . . . 5  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
128, 9, 11sylancr 414 . . . 4  |-  ( G  e. Rng  ->  ( Base `  G
)  e.  _V )
132, 12eqeltrid 2283 . . 3  |-  ( G  e. Rng  ->  B  e.  _V )
141, 7, 13, 9ressplusgd 12816 . 2  |-  ( G  e. Rng  ->  ( +g  `  G
)  =  ( +g  `  ( Gs  B ) ) )
15 eqid 2196 . . . 4  |-  ( Gs  B )  =  ( Gs  B )
16 eqid 2196 . . . 4  |-  ( .r
`  G )  =  ( .r `  G
)
1715, 16ressmulrg 12832 . . 3  |-  ( ( B  e.  _V  /\  G  e. Rng )  ->  ( .r `  G )  =  ( .r `  ( Gs  B ) ) )
1813, 17mpancom 422 . 2  |-  ( G  e. Rng  ->  ( .r `  G )  =  ( .r `  ( Gs  B ) ) )
19 rngabl 13501 . . 3  |-  ( G  e. Rng  ->  G  e.  Abel )
202ablressid 13475 . . 3  |-  ( G  e.  Abel  ->  ( Gs  B )  e.  Abel )
2119, 20syl 14 . 2  |-  ( G  e. Rng  ->  ( Gs  B )  e.  Abel )
222, 16rngcl 13510 . 2  |-  ( ( G  e. Rng  /\  x  e.  B  /\  y  e.  B )  ->  (
x ( .r `  G ) y )  e.  B )
232, 16rngass 13505 . 2  |-  ( ( G  e. Rng  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( (
x ( .r `  G ) y ) ( .r `  G
) z )  =  ( x ( .r
`  G ) ( y ( .r `  G ) z ) ) )
24 eqid 2196 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
252, 24, 16rngdi 13506 . 2  |-  ( ( G  e. Rng  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( x
( .r `  G
) ( y ( +g  `  G ) z ) )  =  ( ( x ( .r `  G ) y ) ( +g  `  G ) ( x ( .r `  G
) z ) ) )
262, 24, 16rngdir 13507 . 2  |-  ( ( G  e. Rng  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( (
x ( +g  `  G
) y ) ( .r `  G ) z )  =  ( ( x ( .r
`  G ) z ) ( +g  `  G
) ( y ( .r `  G ) z ) ) )
276, 14, 18, 21, 22, 23, 25, 26isrngd 13519 1  |-  ( G  e. Rng  ->  ( Gs  B )  e. Rng )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   _Vcvv 2763    Fn wfn 5254   ` cfv 5259  (class class class)co 5923   Basecbs 12688   ↾s cress 12689   +g cplusg 12765   .rcmulr 12766   Abelcabl 13425  Rngcrng 13498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-addcom 7981  ax-addass 7983  ax-i2m1 7986  ax-0lt1 7987  ax-0id 7989  ax-rnegex 7990  ax-pre-ltirr 7993  ax-pre-lttrn 7995  ax-pre-ltadd 7997
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-pnf 8065  df-mnf 8066  df-ltxr 8068  df-inn 8993  df-2 9051  df-3 9052  df-ndx 12691  df-slot 12692  df-base 12694  df-sets 12695  df-iress 12696  df-plusg 12778  df-mulr 12779  df-0g 12939  df-mgm 13009  df-sgrp 13055  df-mnd 13068  df-grp 13145  df-minusg 13146  df-cmn 13426  df-abl 13427  df-mgp 13487  df-rng 13499
This theorem is referenced by:  subrngid  13767
  Copyright terms: Public domain W3C validator