ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rngressid Unicode version

Theorem rngressid 13305
Description: A non-unital ring restricted to its base set is a non-unital ring. It will usually be the original non-unital ring exactly, of course, but to show that needs additional conditions such as those in strressid 12580. (Contributed by Jim Kingdon, 5-May-2025.)
Hypothesis
Ref Expression
rngressid.b  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
rngressid  |-  ( G  e. Rng  ->  ( Gs  B )  e. Rng )

Proof of Theorem rngressid
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2190 . . 3  |-  ( G  e. Rng  ->  ( Gs  B )  =  ( Gs  B ) )
2 rngressid.b . . . 4  |-  B  =  ( Base `  G
)
32a1i 9 . . 3  |-  ( G  e. Rng  ->  B  =  (
Base `  G )
)
4 id 19 . . 3  |-  ( G  e. Rng  ->  G  e. Rng )
5 ssidd 3191 . . 3  |-  ( G  e. Rng  ->  B  C_  B
)
61, 3, 4, 5ressbas2d 12577 . 2  |-  ( G  e. Rng  ->  B  =  (
Base `  ( Gs  B
) ) )
7 eqidd 2190 . . 3  |-  ( G  e. Rng  ->  ( +g  `  G
)  =  ( +g  `  G ) )
8 basfn 12569 . . . . 5  |-  Base  Fn  _V
9 elex 2763 . . . . 5  |-  ( G  e. Rng  ->  G  e.  _V )
10 funfvex 5551 . . . . . 6  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
1110funfni 5335 . . . . 5  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
128, 9, 11sylancr 414 . . . 4  |-  ( G  e. Rng  ->  ( Base `  G
)  e.  _V )
132, 12eqeltrid 2276 . . 3  |-  ( G  e. Rng  ->  B  e.  _V )
141, 7, 13, 9ressplusgd 12637 . 2  |-  ( G  e. Rng  ->  ( +g  `  G
)  =  ( +g  `  ( Gs  B ) ) )
15 eqid 2189 . . . 4  |-  ( Gs  B )  =  ( Gs  B )
16 eqid 2189 . . . 4  |-  ( .r
`  G )  =  ( .r `  G
)
1715, 16ressmulrg 12653 . . 3  |-  ( ( B  e.  _V  /\  G  e. Rng )  ->  ( .r `  G )  =  ( .r `  ( Gs  B ) ) )
1813, 17mpancom 422 . 2  |-  ( G  e. Rng  ->  ( .r `  G )  =  ( .r `  ( Gs  B ) ) )
19 rngabl 13286 . . 3  |-  ( G  e. Rng  ->  G  e.  Abel )
202ablressid 13269 . . 3  |-  ( G  e.  Abel  ->  ( Gs  B )  e.  Abel )
2119, 20syl 14 . 2  |-  ( G  e. Rng  ->  ( Gs  B )  e.  Abel )
222, 16rngcl 13295 . 2  |-  ( ( G  e. Rng  /\  x  e.  B  /\  y  e.  B )  ->  (
x ( .r `  G ) y )  e.  B )
232, 16rngass 13290 . 2  |-  ( ( G  e. Rng  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( (
x ( .r `  G ) y ) ( .r `  G
) z )  =  ( x ( .r
`  G ) ( y ( .r `  G ) z ) ) )
24 eqid 2189 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
252, 24, 16rngdi 13291 . 2  |-  ( ( G  e. Rng  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( x
( .r `  G
) ( y ( +g  `  G ) z ) )  =  ( ( x ( .r `  G ) y ) ( +g  `  G ) ( x ( .r `  G
) z ) ) )
262, 24, 16rngdir 13292 . 2  |-  ( ( G  e. Rng  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( (
x ( +g  `  G
) y ) ( .r `  G ) z )  =  ( ( x ( .r
`  G ) z ) ( +g  `  G
) ( y ( .r `  G ) z ) ) )
276, 14, 18, 21, 22, 23, 25, 26isrngd 13304 1  |-  ( G  e. Rng  ->  ( Gs  B )  e. Rng )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2160   _Vcvv 2752    Fn wfn 5230   ` cfv 5235  (class class class)co 5895   Basecbs 12511   ↾s cress 12512   +g cplusg 12586   .rcmulr 12587   Abelcabl 13221  Rngcrng 13283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7931  ax-resscn 7932  ax-1cn 7933  ax-1re 7934  ax-icn 7935  ax-addcl 7936  ax-addrcl 7937  ax-mulcl 7938  ax-addcom 7940  ax-addass 7942  ax-i2m1 7945  ax-0lt1 7946  ax-0id 7948  ax-rnegex 7949  ax-pre-ltirr 7952  ax-pre-lttrn 7954  ax-pre-ltadd 7956
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-pnf 8023  df-mnf 8024  df-ltxr 8026  df-inn 8949  df-2 9007  df-3 9008  df-ndx 12514  df-slot 12515  df-base 12517  df-sets 12518  df-iress 12519  df-plusg 12599  df-mulr 12600  df-0g 12760  df-mgm 12829  df-sgrp 12862  df-mnd 12875  df-grp 12945  df-minusg 12946  df-cmn 13222  df-abl 13223  df-mgp 13272  df-rng 13284
This theorem is referenced by:  subrngid  13545
  Copyright terms: Public domain W3C validator