ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rngressid Unicode version

Theorem rngressid 13917
Description: A non-unital ring restricted to its base set is a non-unital ring. It will usually be the original non-unital ring exactly, of course, but to show that needs additional conditions such as those in strressid 13104. (Contributed by Jim Kingdon, 5-May-2025.)
Hypothesis
Ref Expression
rngressid.b  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
rngressid  |-  ( G  e. Rng  ->  ( Gs  B )  e. Rng )

Proof of Theorem rngressid
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2230 . . 3  |-  ( G  e. Rng  ->  ( Gs  B )  =  ( Gs  B ) )
2 rngressid.b . . . 4  |-  B  =  ( Base `  G
)
32a1i 9 . . 3  |-  ( G  e. Rng  ->  B  =  (
Base `  G )
)
4 id 19 . . 3  |-  ( G  e. Rng  ->  G  e. Rng )
5 ssidd 3245 . . 3  |-  ( G  e. Rng  ->  B  C_  B
)
61, 3, 4, 5ressbas2d 13101 . 2  |-  ( G  e. Rng  ->  B  =  (
Base `  ( Gs  B
) ) )
7 eqidd 2230 . . 3  |-  ( G  e. Rng  ->  ( +g  `  G
)  =  ( +g  `  G ) )
8 basfn 13091 . . . . 5  |-  Base  Fn  _V
9 elex 2811 . . . . 5  |-  ( G  e. Rng  ->  G  e.  _V )
10 funfvex 5644 . . . . . 6  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
1110funfni 5423 . . . . 5  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
128, 9, 11sylancr 414 . . . 4  |-  ( G  e. Rng  ->  ( Base `  G
)  e.  _V )
132, 12eqeltrid 2316 . . 3  |-  ( G  e. Rng  ->  B  e.  _V )
141, 7, 13, 9ressplusgd 13162 . 2  |-  ( G  e. Rng  ->  ( +g  `  G
)  =  ( +g  `  ( Gs  B ) ) )
15 eqid 2229 . . . 4  |-  ( Gs  B )  =  ( Gs  B )
16 eqid 2229 . . . 4  |-  ( .r
`  G )  =  ( .r `  G
)
1715, 16ressmulrg 13178 . . 3  |-  ( ( B  e.  _V  /\  G  e. Rng )  ->  ( .r `  G )  =  ( .r `  ( Gs  B ) ) )
1813, 17mpancom 422 . 2  |-  ( G  e. Rng  ->  ( .r `  G )  =  ( .r `  ( Gs  B ) ) )
19 rngabl 13898 . . 3  |-  ( G  e. Rng  ->  G  e.  Abel )
202ablressid 13872 . . 3  |-  ( G  e.  Abel  ->  ( Gs  B )  e.  Abel )
2119, 20syl 14 . 2  |-  ( G  e. Rng  ->  ( Gs  B )  e.  Abel )
222, 16rngcl 13907 . 2  |-  ( ( G  e. Rng  /\  x  e.  B  /\  y  e.  B )  ->  (
x ( .r `  G ) y )  e.  B )
232, 16rngass 13902 . 2  |-  ( ( G  e. Rng  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( (
x ( .r `  G ) y ) ( .r `  G
) z )  =  ( x ( .r
`  G ) ( y ( .r `  G ) z ) ) )
24 eqid 2229 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
252, 24, 16rngdi 13903 . 2  |-  ( ( G  e. Rng  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( x
( .r `  G
) ( y ( +g  `  G ) z ) )  =  ( ( x ( .r `  G ) y ) ( +g  `  G ) ( x ( .r `  G
) z ) ) )
262, 24, 16rngdir 13904 . 2  |-  ( ( G  e. Rng  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( (
x ( +g  `  G
) y ) ( .r `  G ) z )  =  ( ( x ( .r
`  G ) z ) ( +g  `  G
) ( y ( .r `  G ) z ) ) )
276, 14, 18, 21, 22, 23, 25, 26isrngd 13916 1  |-  ( G  e. Rng  ->  ( Gs  B )  e. Rng )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   _Vcvv 2799    Fn wfn 5313   ` cfv 5318  (class class class)co 6001   Basecbs 13032   ↾s cress 13033   +g cplusg 13110   .rcmulr 13111   Abelcabl 13822  Rngcrng 13895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-pre-ltirr 8111  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-inn 9111  df-2 9169  df-3 9170  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-iress 13040  df-plusg 13123  df-mulr 13124  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-grp 13536  df-minusg 13537  df-cmn 13823  df-abl 13824  df-mgp 13884  df-rng 13896
This theorem is referenced by:  subrngid  14165
  Copyright terms: Public domain W3C validator