ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftval2 Unicode version

Theorem shftval2 10876
Description: Value of a sequence shifted by  A  -  B. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1  |-  F  e. 
_V
Assertion
Ref Expression
shftval2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( F  shift  ( A  -  B ) ) `
 ( A  +  C ) )  =  ( F `  ( B  +  C )
) )

Proof of Theorem shftval2
StepHypRef Expression
1 subcl 8191 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  B
)  e.  CC )
213adant3 1019 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  -  B )  e.  CC )
3 addcl 7971 . . . 4  |-  ( ( A  e.  CC  /\  C  e.  CC )  ->  ( A  +  C
)  e.  CC )
433adant2 1018 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  +  C )  e.  CC )
5 shftfval.1 . . . 4  |-  F  e. 
_V
65shftval 10875 . . 3  |-  ( ( ( A  -  B
)  e.  CC  /\  ( A  +  C
)  e.  CC )  ->  ( ( F 
shift  ( A  -  B
) ) `  ( A  +  C )
)  =  ( F `
 ( ( A  +  C )  -  ( A  -  B
) ) ) )
72, 4, 6syl2anc 411 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( F  shift  ( A  -  B ) ) `
 ( A  +  C ) )  =  ( F `  (
( A  +  C
)  -  ( A  -  B ) ) ) )
8 pnncan 8233 . . . . 5  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  B  e.  CC )  ->  (
( A  +  C
)  -  ( A  -  B ) )  =  ( C  +  B ) )
983com23 1211 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  C
)  -  ( A  -  B ) )  =  ( C  +  B ) )
10 addcom 8129 . . . . 5  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  +  C
)  =  ( C  +  B ) )
11103adant1 1017 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( B  +  C )  =  ( C  +  B ) )
129, 11eqtr4d 2225 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  C
)  -  ( A  -  B ) )  =  ( B  +  C ) )
1312fveq2d 5541 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( F `  ( ( A  +  C )  -  ( A  -  B ) ) )  =  ( F `  ( B  +  C
) ) )
147, 13eqtrd 2222 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( F  shift  ( A  -  B ) ) `
 ( A  +  C ) )  =  ( F `  ( B  +  C )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980    = wceq 1364    e. wcel 2160   _Vcvv 2752   ` cfv 5238  (class class class)co 5900   CCcc 7844    + caddc 7849    - cmin 8163    shift cshi 10864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4136  ax-sep 4139  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-resscn 7938  ax-1cn 7939  ax-icn 7941  ax-addcl 7942  ax-addrcl 7943  ax-mulcl 7944  ax-addcom 7946  ax-addass 7948  ax-distr 7950  ax-i2m1 7951  ax-0id 7954  ax-rnegex 7955  ax-cnre 7957
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-iun 3906  df-br 4022  df-opab 4083  df-mpt 4084  df-id 4314  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-f1 5243  df-fo 5244  df-f1o 5245  df-fv 5246  df-riota 5855  df-ov 5903  df-oprab 5904  df-mpo 5905  df-sub 8165  df-shft 10865
This theorem is referenced by:  shftval3  10877
  Copyright terms: Public domain W3C validator