![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > shftval2 | GIF version |
Description: Value of a sequence shifted by 𝐴 − 𝐵. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 5-Nov-2013.) |
Ref | Expression |
---|---|
shftfval.1 | ⊢ 𝐹 ∈ V |
Ref | Expression |
---|---|
shftval2 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐹 shift (𝐴 − 𝐵))‘(𝐴 + 𝐶)) = (𝐹‘(𝐵 + 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subcl 8186 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
2 | 1 | 3adant3 1019 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) |
3 | addcl 7966 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + 𝐶) ∈ ℂ) | |
4 | 3 | 3adant2 1018 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + 𝐶) ∈ ℂ) |
5 | shftfval.1 | . . . 4 ⊢ 𝐹 ∈ V | |
6 | 5 | shftval 10866 | . . 3 ⊢ (((𝐴 − 𝐵) ∈ ℂ ∧ (𝐴 + 𝐶) ∈ ℂ) → ((𝐹 shift (𝐴 − 𝐵))‘(𝐴 + 𝐶)) = (𝐹‘((𝐴 + 𝐶) − (𝐴 − 𝐵)))) |
7 | 2, 4, 6 | syl2anc 411 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐹 shift (𝐴 − 𝐵))‘(𝐴 + 𝐶)) = (𝐹‘((𝐴 + 𝐶) − (𝐴 − 𝐵)))) |
8 | pnncan 8228 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐶) − (𝐴 − 𝐵)) = (𝐶 + 𝐵)) | |
9 | 8 | 3com23 1211 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐶) − (𝐴 − 𝐵)) = (𝐶 + 𝐵)) |
10 | addcom 8124 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 + 𝐶) = (𝐶 + 𝐵)) | |
11 | 10 | 3adant1 1017 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 + 𝐶) = (𝐶 + 𝐵)) |
12 | 9, 11 | eqtr4d 2225 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐶) − (𝐴 − 𝐵)) = (𝐵 + 𝐶)) |
13 | 12 | fveq2d 5538 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐹‘((𝐴 + 𝐶) − (𝐴 − 𝐵))) = (𝐹‘(𝐵 + 𝐶))) |
14 | 7, 13 | eqtrd 2222 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐹 shift (𝐴 − 𝐵))‘(𝐴 + 𝐶)) = (𝐹‘(𝐵 + 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2160 Vcvv 2752 ‘cfv 5235 (class class class)co 5896 ℂcc 7839 + caddc 7844 − cmin 8158 shift cshi 10855 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-resscn 7933 ax-1cn 7934 ax-icn 7936 ax-addcl 7937 ax-addrcl 7938 ax-mulcl 7939 ax-addcom 7941 ax-addass 7943 ax-distr 7945 ax-i2m1 7946 ax-0id 7949 ax-rnegex 7950 ax-cnre 7952 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-riota 5852 df-ov 5899 df-oprab 5900 df-mpo 5901 df-sub 8160 df-shft 10856 |
This theorem is referenced by: shftval3 10868 |
Copyright terms: Public domain | W3C validator |