| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluzle | Unicode version | ||
| Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) |
| Ref | Expression |
|---|---|
| eluzle |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2 9689 |
. 2
| |
| 2 | 1 | simp3bi 1017 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-cnex 8051 ax-resscn 8052 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-ov 5970 df-neg 8281 df-z 9408 df-uz 9684 |
| This theorem is referenced by: uztrn 9700 uzneg 9702 uzss 9704 uz11 9706 eluzp1l 9708 uzm1 9714 uzin 9716 uzind4 9744 elfz5 10174 elfzle1 10184 elfzle2 10185 elfzle3 10187 uzsplit 10249 uzdisj 10250 uznfz 10260 elfz2nn0 10269 uzsubfz0 10286 nn0disj 10295 fzouzdisj 10339 fzoun 10340 elfzonelfzo 10396 infssuzex 10413 suprzubdc 10416 fldiv4lem1div2uz2 10486 mulp1mod1 10547 m1modge3gt1 10553 uzennn 10618 seq3split 10670 seq3f1olemqsumk 10694 seq3f1o 10699 seq3coll 11024 swrdlen2 11153 swrdfv2 11154 seq3shft 11264 cvg1nlemcau 11410 resqrexlemcvg 11445 resqrexlemga 11449 summodclem2a 11807 fsum3 11813 fsum3cvg3 11822 fsumadd 11832 sumsnf 11835 fsummulc2 11874 isumshft 11916 divcnv 11923 geolim2 11938 cvgratnnlemseq 11952 cvgratnnlemsumlt 11954 cvgratz 11958 mertenslemi1 11961 prodmodclem3 12001 prodmodclem2a 12002 fprodntrivap 12010 prodsnf 12018 fprodeq0 12043 efcllemp 12084 dvdsbnd 12392 uzwodc 12473 ncoprmgcdne1b 12526 isprm5 12579 hashdvds 12658 pcmpt2 12782 pcfaclem 12787 pcfac 12788 nninfdclemp1 12936 strext 13052 gsumfzval 13338 znidom 14534 lgslem1 15592 lgsdirprm 15626 lgseisen 15666 cvgcmp2nlemabs 16173 |
| Copyright terms: Public domain | W3C validator |