![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eluzle | Unicode version |
Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) |
Ref | Expression |
---|---|
eluzle |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2 9598 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | simp3bi 1016 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-cnex 7963 ax-resscn 7964 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-ov 5921 df-neg 8193 df-z 9318 df-uz 9593 |
This theorem is referenced by: uztrn 9609 uzneg 9611 uzss 9613 uz11 9615 eluzp1l 9617 uzm1 9623 uzin 9625 uzind4 9653 elfz5 10083 elfzle1 10093 elfzle2 10094 elfzle3 10096 uzsplit 10158 uzdisj 10159 uznfz 10169 elfz2nn0 10178 uzsubfz0 10195 nn0disj 10204 fzouzdisj 10247 elfzonelfzo 10297 fldiv4lem1div2uz2 10375 mulp1mod1 10436 m1modge3gt1 10442 uzennn 10507 seq3split 10559 seq3f1olemqsumk 10583 seq3f1o 10588 seq3coll 10913 seq3shft 10982 cvg1nlemcau 11128 resqrexlemcvg 11163 resqrexlemga 11167 summodclem2a 11524 fsum3 11530 fsum3cvg3 11539 fsumadd 11549 sumsnf 11552 fsummulc2 11591 isumshft 11633 divcnv 11640 geolim2 11655 cvgratnnlemseq 11669 cvgratnnlemsumlt 11671 cvgratz 11675 mertenslemi1 11678 prodmodclem3 11718 prodmodclem2a 11719 fprodntrivap 11727 prodsnf 11735 fprodeq0 11760 efcllemp 11801 infssuzex 12086 suprzubdc 12089 dvdsbnd 12093 uzwodc 12174 ncoprmgcdne1b 12227 isprm5 12280 hashdvds 12359 pcmpt2 12482 pcfaclem 12487 pcfac 12488 nninfdclemp1 12607 strext 12723 gsumfzval 12974 znidom 14145 lgslem1 15116 lgsdirprm 15150 lgseisen 15190 cvgcmp2nlemabs 15522 |
Copyright terms: Public domain | W3C validator |