| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluzle | Unicode version | ||
| Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) |
| Ref | Expression |
|---|---|
| eluzle |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2 9624 |
. 2
| |
| 2 | 1 | simp3bi 1016 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-cnex 7987 ax-resscn 7988 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-ov 5928 df-neg 8217 df-z 9344 df-uz 9619 |
| This theorem is referenced by: uztrn 9635 uzneg 9637 uzss 9639 uz11 9641 eluzp1l 9643 uzm1 9649 uzin 9651 uzind4 9679 elfz5 10109 elfzle1 10119 elfzle2 10120 elfzle3 10122 uzsplit 10184 uzdisj 10185 uznfz 10195 elfz2nn0 10204 uzsubfz0 10221 nn0disj 10230 fzouzdisj 10273 elfzonelfzo 10323 infssuzex 10340 suprzubdc 10343 fldiv4lem1div2uz2 10413 mulp1mod1 10474 m1modge3gt1 10480 uzennn 10545 seq3split 10597 seq3f1olemqsumk 10621 seq3f1o 10626 seq3coll 10951 seq3shft 11020 cvg1nlemcau 11166 resqrexlemcvg 11201 resqrexlemga 11205 summodclem2a 11563 fsum3 11569 fsum3cvg3 11578 fsumadd 11588 sumsnf 11591 fsummulc2 11630 isumshft 11672 divcnv 11679 geolim2 11694 cvgratnnlemseq 11708 cvgratnnlemsumlt 11710 cvgratz 11714 mertenslemi1 11717 prodmodclem3 11757 prodmodclem2a 11758 fprodntrivap 11766 prodsnf 11774 fprodeq0 11799 efcllemp 11840 dvdsbnd 12148 uzwodc 12229 ncoprmgcdne1b 12282 isprm5 12335 hashdvds 12414 pcmpt2 12538 pcfaclem 12543 pcfac 12544 nninfdclemp1 12692 strext 12808 gsumfzval 13093 znidom 14289 lgslem1 15325 lgsdirprm 15359 lgseisen 15399 cvgcmp2nlemabs 15763 |
| Copyright terms: Public domain | W3C validator |