| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluzle | Unicode version | ||
| Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) |
| Ref | Expression |
|---|---|
| eluzle |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2 9728 |
. 2
| |
| 2 | 1 | simp3bi 1038 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-cnex 8090 ax-resscn 8091 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-ov 6004 df-neg 8320 df-z 9447 df-uz 9723 |
| This theorem is referenced by: uztrn 9739 uzneg 9741 uzss 9743 uz11 9745 eluzp1l 9747 uzm1 9753 uzin 9755 uzind4 9783 elfz5 10213 elfzle1 10223 elfzle2 10224 elfzle3 10226 uzsplit 10288 uzdisj 10289 uznfz 10299 elfz2nn0 10308 uzsubfz0 10325 nn0disj 10334 fzouzdisj 10378 fzoun 10379 elfzonelfzo 10436 infssuzex 10453 suprzubdc 10456 fldiv4lem1div2uz2 10526 mulp1mod1 10587 m1modge3gt1 10593 uzennn 10658 seq3split 10710 seq3f1olemqsumk 10734 seq3f1o 10739 seq3coll 11064 swrdlen2 11194 swrdfv2 11195 seq3shft 11349 cvg1nlemcau 11495 resqrexlemcvg 11530 resqrexlemga 11534 summodclem2a 11892 fsum3 11898 fsum3cvg3 11907 fsumadd 11917 sumsnf 11920 fsummulc2 11959 isumshft 12001 divcnv 12008 geolim2 12023 cvgratnnlemseq 12037 cvgratnnlemsumlt 12039 cvgratz 12043 mertenslemi1 12046 prodmodclem3 12086 prodmodclem2a 12087 fprodntrivap 12095 prodsnf 12103 fprodeq0 12128 efcllemp 12169 dvdsbnd 12477 uzwodc 12558 ncoprmgcdne1b 12611 isprm5 12664 hashdvds 12743 pcmpt2 12867 pcfaclem 12872 pcfac 12873 nninfdclemp1 13021 strext 13138 gsumfzval 13424 znidom 14621 lgslem1 15679 lgsdirprm 15713 lgseisen 15753 cvgcmp2nlemabs 16400 |
| Copyright terms: Public domain | W3C validator |