| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluzle | Unicode version | ||
| Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) |
| Ref | Expression |
|---|---|
| eluzle |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2 9656 |
. 2
| |
| 2 | 1 | simp3bi 1017 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-cnex 8018 ax-resscn 8019 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-fv 5280 df-ov 5949 df-neg 8248 df-z 9375 df-uz 9651 |
| This theorem is referenced by: uztrn 9667 uzneg 9669 uzss 9671 uz11 9673 eluzp1l 9675 uzm1 9681 uzin 9683 uzind4 9711 elfz5 10141 elfzle1 10151 elfzle2 10152 elfzle3 10154 uzsplit 10216 uzdisj 10217 uznfz 10227 elfz2nn0 10236 uzsubfz0 10253 nn0disj 10262 fzouzdisj 10306 elfzonelfzo 10361 infssuzex 10378 suprzubdc 10381 fldiv4lem1div2uz2 10451 mulp1mod1 10512 m1modge3gt1 10518 uzennn 10583 seq3split 10635 seq3f1olemqsumk 10659 seq3f1o 10664 seq3coll 10989 swrdlen2 11118 swrdfv2 11119 seq3shft 11182 cvg1nlemcau 11328 resqrexlemcvg 11363 resqrexlemga 11367 summodclem2a 11725 fsum3 11731 fsum3cvg3 11740 fsumadd 11750 sumsnf 11753 fsummulc2 11792 isumshft 11834 divcnv 11841 geolim2 11856 cvgratnnlemseq 11870 cvgratnnlemsumlt 11872 cvgratz 11876 mertenslemi1 11879 prodmodclem3 11919 prodmodclem2a 11920 fprodntrivap 11928 prodsnf 11936 fprodeq0 11961 efcllemp 12002 dvdsbnd 12310 uzwodc 12391 ncoprmgcdne1b 12444 isprm5 12497 hashdvds 12576 pcmpt2 12700 pcfaclem 12705 pcfac 12706 nninfdclemp1 12854 strext 12970 gsumfzval 13256 znidom 14452 lgslem1 15510 lgsdirprm 15544 lgseisen 15584 cvgcmp2nlemabs 16008 |
| Copyright terms: Public domain | W3C validator |