| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluzle | Unicode version | ||
| Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) |
| Ref | Expression |
|---|---|
| eluzle |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2 9609 |
. 2
| |
| 2 | 1 | simp3bi 1016 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-cnex 7972 ax-resscn 7973 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-ov 5926 df-neg 8202 df-z 9329 df-uz 9604 |
| This theorem is referenced by: uztrn 9620 uzneg 9622 uzss 9624 uz11 9626 eluzp1l 9628 uzm1 9634 uzin 9636 uzind4 9664 elfz5 10094 elfzle1 10104 elfzle2 10105 elfzle3 10107 uzsplit 10169 uzdisj 10170 uznfz 10180 elfz2nn0 10189 uzsubfz0 10206 nn0disj 10215 fzouzdisj 10258 elfzonelfzo 10308 infssuzex 10325 suprzubdc 10328 fldiv4lem1div2uz2 10398 mulp1mod1 10459 m1modge3gt1 10465 uzennn 10530 seq3split 10582 seq3f1olemqsumk 10606 seq3f1o 10611 seq3coll 10936 seq3shft 11005 cvg1nlemcau 11151 resqrexlemcvg 11186 resqrexlemga 11190 summodclem2a 11548 fsum3 11554 fsum3cvg3 11563 fsumadd 11573 sumsnf 11576 fsummulc2 11615 isumshft 11657 divcnv 11664 geolim2 11679 cvgratnnlemseq 11693 cvgratnnlemsumlt 11695 cvgratz 11699 mertenslemi1 11702 prodmodclem3 11742 prodmodclem2a 11743 fprodntrivap 11751 prodsnf 11759 fprodeq0 11784 efcllemp 11825 dvdsbnd 12133 uzwodc 12214 ncoprmgcdne1b 12267 isprm5 12320 hashdvds 12399 pcmpt2 12523 pcfaclem 12528 pcfac 12529 nninfdclemp1 12677 strext 12793 gsumfzval 13044 znidom 14223 lgslem1 15251 lgsdirprm 15285 lgseisen 15325 cvgcmp2nlemabs 15686 |
| Copyright terms: Public domain | W3C validator |