| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eluzle | Unicode version | ||
| Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) | 
| Ref | Expression | 
|---|---|
| eluzle | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eluz2 9607 | 
. 2
 | |
| 2 | 1 | simp3bi 1016 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-cnex 7970 ax-resscn 7971 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-ov 5925 df-neg 8200 df-z 9327 df-uz 9602 | 
| This theorem is referenced by: uztrn 9618 uzneg 9620 uzss 9622 uz11 9624 eluzp1l 9626 uzm1 9632 uzin 9634 uzind4 9662 elfz5 10092 elfzle1 10102 elfzle2 10103 elfzle3 10105 uzsplit 10167 uzdisj 10168 uznfz 10178 elfz2nn0 10187 uzsubfz0 10204 nn0disj 10213 fzouzdisj 10256 elfzonelfzo 10306 infssuzex 10323 suprzubdc 10326 fldiv4lem1div2uz2 10396 mulp1mod1 10457 m1modge3gt1 10463 uzennn 10528 seq3split 10580 seq3f1olemqsumk 10604 seq3f1o 10609 seq3coll 10934 seq3shft 11003 cvg1nlemcau 11149 resqrexlemcvg 11184 resqrexlemga 11188 summodclem2a 11546 fsum3 11552 fsum3cvg3 11561 fsumadd 11571 sumsnf 11574 fsummulc2 11613 isumshft 11655 divcnv 11662 geolim2 11677 cvgratnnlemseq 11691 cvgratnnlemsumlt 11693 cvgratz 11697 mertenslemi1 11700 prodmodclem3 11740 prodmodclem2a 11741 fprodntrivap 11749 prodsnf 11757 fprodeq0 11782 efcllemp 11823 dvdsbnd 12123 uzwodc 12204 ncoprmgcdne1b 12257 isprm5 12310 hashdvds 12389 pcmpt2 12513 pcfaclem 12518 pcfac 12519 nninfdclemp1 12667 strext 12783 gsumfzval 13034 znidom 14213 lgslem1 15241 lgsdirprm 15275 lgseisen 15315 cvgcmp2nlemabs 15676 | 
| Copyright terms: Public domain | W3C validator |