Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eluzle | Unicode version |
Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) |
Ref | Expression |
---|---|
eluzle |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2 9468 | . 2 | |
2 | 1 | simp3bi 1004 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2136 class class class wbr 3981 cfv 5187 cle 7930 cz 9187 cuz 9462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-cnex 7840 ax-resscn 7841 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-rab 2452 df-v 2727 df-sbc 2951 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-opab 4043 df-mpt 4044 df-id 4270 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-fv 5195 df-ov 5844 df-neg 8068 df-z 9188 df-uz 9463 |
This theorem is referenced by: uztrn 9478 uzneg 9480 uzss 9482 uz11 9484 eluzp1l 9486 uzm1 9492 uzin 9494 uzind4 9522 elfz5 9948 elfzle1 9958 elfzle2 9959 elfzle3 9961 uzsplit 10023 uzdisj 10024 uznfz 10034 elfz2nn0 10043 uzsubfz0 10060 nn0disj 10069 fzouzdisj 10111 elfzonelfzo 10161 mulp1mod1 10296 m1modge3gt1 10302 uzennn 10367 seq3split 10410 seq3f1olemqsumk 10430 seq3f1o 10435 seq3coll 10751 seq3shft 10776 cvg1nlemcau 10922 resqrexlemcvg 10957 resqrexlemga 10961 summodclem2a 11318 fsum3 11324 fsum3cvg3 11333 fsumadd 11343 sumsnf 11346 fsummulc2 11385 isumshft 11427 divcnv 11434 geolim2 11449 cvgratnnlemseq 11463 cvgratnnlemsumlt 11465 cvgratz 11469 mertenslemi1 11472 prodmodclem3 11512 prodmodclem2a 11513 fprodntrivap 11521 prodsnf 11529 fprodeq0 11554 efcllemp 11595 infssuzex 11878 suprzubdc 11881 dvdsbnd 11885 uzwodc 11966 ncoprmgcdne1b 12017 isprm5 12070 hashdvds 12149 pcmpt2 12270 pcfaclem 12275 pcfac 12276 nninfdclemp1 12379 lgslem1 13501 lgsdirprm 13535 cvgcmp2nlemabs 13871 |
Copyright terms: Public domain | W3C validator |