ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subggrp Unicode version

Theorem subggrp 13042
Description: A subgroup is a group. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypothesis
Ref Expression
subggrp.h  |-  H  =  ( Gs  S )
Assertion
Ref Expression
subggrp  |-  ( S  e.  (SubGrp `  G
)  ->  H  e.  Grp )

Proof of Theorem subggrp
StepHypRef Expression
1 subggrp.h . 2  |-  H  =  ( Gs  S )
2 eqid 2177 . . . 4  |-  ( Base `  G )  =  (
Base `  G )
32issubg 13038 . . 3  |-  ( S  e.  (SubGrp `  G
)  <->  ( G  e. 
Grp  /\  S  C_  ( Base `  G )  /\  ( Gs  S )  e.  Grp ) )
43simp3bi 1014 . 2  |-  ( S  e.  (SubGrp `  G
)  ->  ( Gs  S
)  e.  Grp )
51, 4eqeltrid 2264 1  |-  ( S  e.  (SubGrp `  G
)  ->  H  e.  Grp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148    C_ wss 3131   ` cfv 5218  (class class class)co 5877   Basecbs 12464   ↾s cress 12465   Grpcgrp 12882  SubGrpcsubg 13032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-ov 5880  df-inn 8922  df-ndx 12467  df-slot 12468  df-base 12470  df-subg 13035
This theorem is referenced by:  subg0  13045  subginv  13046  subg0cl  13047  subginvcl  13048  subgcl  13049  issubg2m  13054  issubgrpd  13056  subsubg  13062  issubrg2  13367  islss3  13471
  Copyright terms: Public domain W3C validator