ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subggrp Unicode version

Theorem subggrp 13307
Description: A subgroup is a group. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypothesis
Ref Expression
subggrp.h  |-  H  =  ( Gs  S )
Assertion
Ref Expression
subggrp  |-  ( S  e.  (SubGrp `  G
)  ->  H  e.  Grp )

Proof of Theorem subggrp
StepHypRef Expression
1 subggrp.h . 2  |-  H  =  ( Gs  S )
2 eqid 2196 . . . 4  |-  ( Base `  G )  =  (
Base `  G )
32issubg 13303 . . 3  |-  ( S  e.  (SubGrp `  G
)  <->  ( G  e. 
Grp  /\  S  C_  ( Base `  G )  /\  ( Gs  S )  e.  Grp ) )
43simp3bi 1016 . 2  |-  ( S  e.  (SubGrp `  G
)  ->  ( Gs  S
)  e.  Grp )
51, 4eqeltrid 2283 1  |-  ( S  e.  (SubGrp `  G
)  ->  H  e.  Grp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167    C_ wss 3157   ` cfv 5258  (class class class)co 5922   Basecbs 12678   ↾s cress 12679   Grpcgrp 13132  SubGrpcsubg 13297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-ov 5925  df-inn 8991  df-ndx 12681  df-slot 12682  df-base 12684  df-subg 13300
This theorem is referenced by:  subg0  13310  subginv  13311  subg0cl  13312  subginvcl  13313  subgcl  13314  issubg2m  13319  issubgrpd  13321  subsubg  13327  resghm  13390  resghm2b  13392  subgabl  13462  issubrg2  13797  islss3  13935
  Copyright terms: Public domain W3C validator