![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssfiexmid | GIF version |
Description: If any subset of a finite set is finite, excluded middle follows. One direction of Theorem 2.1 of [Bauer], p. 485. (Contributed by Jim Kingdon, 19-May-2020.) |
Ref | Expression |
---|---|
ssfiexmid.1 | ⊢ ∀𝑥∀𝑦((𝑥 ∈ Fin ∧ 𝑦 ⊆ 𝑥) → 𝑦 ∈ Fin) |
Ref | Expression |
---|---|
ssfiexmid | ⊢ (𝜑 ∨ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4132 | . . . 4 ⊢ ∅ ∈ V | |
2 | snfig 6816 | . . . 4 ⊢ (∅ ∈ V → {∅} ∈ Fin) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ {∅} ∈ Fin |
4 | ssrab2 3242 | . . 3 ⊢ {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅} | |
5 | ssfiexmid.1 | . . . . 5 ⊢ ∀𝑥∀𝑦((𝑥 ∈ Fin ∧ 𝑦 ⊆ 𝑥) → 𝑦 ∈ Fin) | |
6 | p0ex 4190 | . . . . . 6 ⊢ {∅} ∈ V | |
7 | eleq1 2240 | . . . . . . . . 9 ⊢ (𝑥 = {∅} → (𝑥 ∈ Fin ↔ {∅} ∈ Fin)) | |
8 | sseq2 3181 | . . . . . . . . 9 ⊢ (𝑥 = {∅} → (𝑦 ⊆ 𝑥 ↔ 𝑦 ⊆ {∅})) | |
9 | 7, 8 | anbi12d 473 | . . . . . . . 8 ⊢ (𝑥 = {∅} → ((𝑥 ∈ Fin ∧ 𝑦 ⊆ 𝑥) ↔ ({∅} ∈ Fin ∧ 𝑦 ⊆ {∅}))) |
10 | 9 | imbi1d 231 | . . . . . . 7 ⊢ (𝑥 = {∅} → (((𝑥 ∈ Fin ∧ 𝑦 ⊆ 𝑥) → 𝑦 ∈ Fin) ↔ (({∅} ∈ Fin ∧ 𝑦 ⊆ {∅}) → 𝑦 ∈ Fin))) |
11 | 10 | albidv 1824 | . . . . . 6 ⊢ (𝑥 = {∅} → (∀𝑦((𝑥 ∈ Fin ∧ 𝑦 ⊆ 𝑥) → 𝑦 ∈ Fin) ↔ ∀𝑦(({∅} ∈ Fin ∧ 𝑦 ⊆ {∅}) → 𝑦 ∈ Fin))) |
12 | 6, 11 | spcv 2833 | . . . . 5 ⊢ (∀𝑥∀𝑦((𝑥 ∈ Fin ∧ 𝑦 ⊆ 𝑥) → 𝑦 ∈ Fin) → ∀𝑦(({∅} ∈ Fin ∧ 𝑦 ⊆ {∅}) → 𝑦 ∈ Fin)) |
13 | 5, 12 | ax-mp 5 | . . . 4 ⊢ ∀𝑦(({∅} ∈ Fin ∧ 𝑦 ⊆ {∅}) → 𝑦 ∈ Fin) |
14 | 6 | rabex 4149 | . . . . 5 ⊢ {𝑧 ∈ {∅} ∣ 𝜑} ∈ V |
15 | sseq1 3180 | . . . . . . 7 ⊢ (𝑦 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑦 ⊆ {∅} ↔ {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅})) | |
16 | 15 | anbi2d 464 | . . . . . 6 ⊢ (𝑦 = {𝑧 ∈ {∅} ∣ 𝜑} → (({∅} ∈ Fin ∧ 𝑦 ⊆ {∅}) ↔ ({∅} ∈ Fin ∧ {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅}))) |
17 | eleq1 2240 | . . . . . 6 ⊢ (𝑦 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑦 ∈ Fin ↔ {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin)) | |
18 | 16, 17 | imbi12d 234 | . . . . 5 ⊢ (𝑦 = {𝑧 ∈ {∅} ∣ 𝜑} → ((({∅} ∈ Fin ∧ 𝑦 ⊆ {∅}) → 𝑦 ∈ Fin) ↔ (({∅} ∈ Fin ∧ {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅}) → {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin))) |
19 | 14, 18 | spcv 2833 | . . . 4 ⊢ (∀𝑦(({∅} ∈ Fin ∧ 𝑦 ⊆ {∅}) → 𝑦 ∈ Fin) → (({∅} ∈ Fin ∧ {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅}) → {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin)) |
20 | 13, 19 | ax-mp 5 | . . 3 ⊢ (({∅} ∈ Fin ∧ {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅}) → {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin) |
21 | 3, 4, 20 | mp2an 426 | . 2 ⊢ {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin |
22 | 21 | ssfilem 6877 | 1 ⊢ (𝜑 ∨ ¬ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 708 ∀wal 1351 = wceq 1353 ∈ wcel 2148 {crab 2459 Vcvv 2739 ⊆ wss 3131 ∅c0 3424 {csn 3594 Fincfn 6742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-id 4295 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-1o 6419 df-er 6537 df-en 6743 df-fin 6745 |
This theorem is referenced by: infiexmid 6879 |
Copyright terms: Public domain | W3C validator |