| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssfiexmid | GIF version | ||
| Description: If any subset of a finite set is finite, excluded middle follows. One direction of Theorem 2.1 of [Bauer], p. 485. (Contributed by Jim Kingdon, 19-May-2020.) |
| Ref | Expression |
|---|---|
| ssfiexmid.1 | ⊢ ∀𝑥∀𝑦((𝑥 ∈ Fin ∧ 𝑦 ⊆ 𝑥) → 𝑦 ∈ Fin) |
| Ref | Expression |
|---|---|
| ssfiexmid | ⊢ (𝜑 ∨ ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4210 | . . . 4 ⊢ ∅ ∈ V | |
| 2 | snfig 6965 | . . . 4 ⊢ (∅ ∈ V → {∅} ∈ Fin) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ {∅} ∈ Fin |
| 4 | ssrab2 3309 | . . 3 ⊢ {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅} | |
| 5 | ssfiexmid.1 | . . . . 5 ⊢ ∀𝑥∀𝑦((𝑥 ∈ Fin ∧ 𝑦 ⊆ 𝑥) → 𝑦 ∈ Fin) | |
| 6 | p0ex 4271 | . . . . . 6 ⊢ {∅} ∈ V | |
| 7 | eleq1 2292 | . . . . . . . . 9 ⊢ (𝑥 = {∅} → (𝑥 ∈ Fin ↔ {∅} ∈ Fin)) | |
| 8 | sseq2 3248 | . . . . . . . . 9 ⊢ (𝑥 = {∅} → (𝑦 ⊆ 𝑥 ↔ 𝑦 ⊆ {∅})) | |
| 9 | 7, 8 | anbi12d 473 | . . . . . . . 8 ⊢ (𝑥 = {∅} → ((𝑥 ∈ Fin ∧ 𝑦 ⊆ 𝑥) ↔ ({∅} ∈ Fin ∧ 𝑦 ⊆ {∅}))) |
| 10 | 9 | imbi1d 231 | . . . . . . 7 ⊢ (𝑥 = {∅} → (((𝑥 ∈ Fin ∧ 𝑦 ⊆ 𝑥) → 𝑦 ∈ Fin) ↔ (({∅} ∈ Fin ∧ 𝑦 ⊆ {∅}) → 𝑦 ∈ Fin))) |
| 11 | 10 | albidv 1870 | . . . . . 6 ⊢ (𝑥 = {∅} → (∀𝑦((𝑥 ∈ Fin ∧ 𝑦 ⊆ 𝑥) → 𝑦 ∈ Fin) ↔ ∀𝑦(({∅} ∈ Fin ∧ 𝑦 ⊆ {∅}) → 𝑦 ∈ Fin))) |
| 12 | 6, 11 | spcv 2897 | . . . . 5 ⊢ (∀𝑥∀𝑦((𝑥 ∈ Fin ∧ 𝑦 ⊆ 𝑥) → 𝑦 ∈ Fin) → ∀𝑦(({∅} ∈ Fin ∧ 𝑦 ⊆ {∅}) → 𝑦 ∈ Fin)) |
| 13 | 5, 12 | ax-mp 5 | . . . 4 ⊢ ∀𝑦(({∅} ∈ Fin ∧ 𝑦 ⊆ {∅}) → 𝑦 ∈ Fin) |
| 14 | 6 | rabex 4227 | . . . . 5 ⊢ {𝑧 ∈ {∅} ∣ 𝜑} ∈ V |
| 15 | sseq1 3247 | . . . . . . 7 ⊢ (𝑦 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑦 ⊆ {∅} ↔ {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅})) | |
| 16 | 15 | anbi2d 464 | . . . . . 6 ⊢ (𝑦 = {𝑧 ∈ {∅} ∣ 𝜑} → (({∅} ∈ Fin ∧ 𝑦 ⊆ {∅}) ↔ ({∅} ∈ Fin ∧ {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅}))) |
| 17 | eleq1 2292 | . . . . . 6 ⊢ (𝑦 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑦 ∈ Fin ↔ {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin)) | |
| 18 | 16, 17 | imbi12d 234 | . . . . 5 ⊢ (𝑦 = {𝑧 ∈ {∅} ∣ 𝜑} → ((({∅} ∈ Fin ∧ 𝑦 ⊆ {∅}) → 𝑦 ∈ Fin) ↔ (({∅} ∈ Fin ∧ {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅}) → {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin))) |
| 19 | 14, 18 | spcv 2897 | . . . 4 ⊢ (∀𝑦(({∅} ∈ Fin ∧ 𝑦 ⊆ {∅}) → 𝑦 ∈ Fin) → (({∅} ∈ Fin ∧ {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅}) → {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin)) |
| 20 | 13, 19 | ax-mp 5 | . . 3 ⊢ (({∅} ∈ Fin ∧ {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅}) → {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin) |
| 21 | 3, 4, 20 | mp2an 426 | . 2 ⊢ {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin |
| 22 | 21 | ssfilem 7033 | 1 ⊢ (𝜑 ∨ ¬ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 713 ∀wal 1393 = wceq 1395 ∈ wcel 2200 {crab 2512 Vcvv 2799 ⊆ wss 3197 ∅c0 3491 {csn 3666 Fincfn 6885 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-id 4383 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-1o 6560 df-er 6678 df-en 6886 df-fin 6888 |
| This theorem is referenced by: infiexmid 7035 |
| Copyright terms: Public domain | W3C validator |