Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssfiexmid | GIF version |
Description: If any subset of a finite set is finite, excluded middle follows. One direction of Theorem 2.1 of [Bauer], p. 485. (Contributed by Jim Kingdon, 19-May-2020.) |
Ref | Expression |
---|---|
ssfiexmid.1 | ⊢ ∀𝑥∀𝑦((𝑥 ∈ Fin ∧ 𝑦 ⊆ 𝑥) → 𝑦 ∈ Fin) |
Ref | Expression |
---|---|
ssfiexmid | ⊢ (𝜑 ∨ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4109 | . . . 4 ⊢ ∅ ∈ V | |
2 | snfig 6780 | . . . 4 ⊢ (∅ ∈ V → {∅} ∈ Fin) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ {∅} ∈ Fin |
4 | ssrab2 3227 | . . 3 ⊢ {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅} | |
5 | ssfiexmid.1 | . . . . 5 ⊢ ∀𝑥∀𝑦((𝑥 ∈ Fin ∧ 𝑦 ⊆ 𝑥) → 𝑦 ∈ Fin) | |
6 | p0ex 4167 | . . . . . 6 ⊢ {∅} ∈ V | |
7 | eleq1 2229 | . . . . . . . . 9 ⊢ (𝑥 = {∅} → (𝑥 ∈ Fin ↔ {∅} ∈ Fin)) | |
8 | sseq2 3166 | . . . . . . . . 9 ⊢ (𝑥 = {∅} → (𝑦 ⊆ 𝑥 ↔ 𝑦 ⊆ {∅})) | |
9 | 7, 8 | anbi12d 465 | . . . . . . . 8 ⊢ (𝑥 = {∅} → ((𝑥 ∈ Fin ∧ 𝑦 ⊆ 𝑥) ↔ ({∅} ∈ Fin ∧ 𝑦 ⊆ {∅}))) |
10 | 9 | imbi1d 230 | . . . . . . 7 ⊢ (𝑥 = {∅} → (((𝑥 ∈ Fin ∧ 𝑦 ⊆ 𝑥) → 𝑦 ∈ Fin) ↔ (({∅} ∈ Fin ∧ 𝑦 ⊆ {∅}) → 𝑦 ∈ Fin))) |
11 | 10 | albidv 1812 | . . . . . 6 ⊢ (𝑥 = {∅} → (∀𝑦((𝑥 ∈ Fin ∧ 𝑦 ⊆ 𝑥) → 𝑦 ∈ Fin) ↔ ∀𝑦(({∅} ∈ Fin ∧ 𝑦 ⊆ {∅}) → 𝑦 ∈ Fin))) |
12 | 6, 11 | spcv 2820 | . . . . 5 ⊢ (∀𝑥∀𝑦((𝑥 ∈ Fin ∧ 𝑦 ⊆ 𝑥) → 𝑦 ∈ Fin) → ∀𝑦(({∅} ∈ Fin ∧ 𝑦 ⊆ {∅}) → 𝑦 ∈ Fin)) |
13 | 5, 12 | ax-mp 5 | . . . 4 ⊢ ∀𝑦(({∅} ∈ Fin ∧ 𝑦 ⊆ {∅}) → 𝑦 ∈ Fin) |
14 | 6 | rabex 4126 | . . . . 5 ⊢ {𝑧 ∈ {∅} ∣ 𝜑} ∈ V |
15 | sseq1 3165 | . . . . . . 7 ⊢ (𝑦 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑦 ⊆ {∅} ↔ {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅})) | |
16 | 15 | anbi2d 460 | . . . . . 6 ⊢ (𝑦 = {𝑧 ∈ {∅} ∣ 𝜑} → (({∅} ∈ Fin ∧ 𝑦 ⊆ {∅}) ↔ ({∅} ∈ Fin ∧ {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅}))) |
17 | eleq1 2229 | . . . . . 6 ⊢ (𝑦 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑦 ∈ Fin ↔ {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin)) | |
18 | 16, 17 | imbi12d 233 | . . . . 5 ⊢ (𝑦 = {𝑧 ∈ {∅} ∣ 𝜑} → ((({∅} ∈ Fin ∧ 𝑦 ⊆ {∅}) → 𝑦 ∈ Fin) ↔ (({∅} ∈ Fin ∧ {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅}) → {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin))) |
19 | 14, 18 | spcv 2820 | . . . 4 ⊢ (∀𝑦(({∅} ∈ Fin ∧ 𝑦 ⊆ {∅}) → 𝑦 ∈ Fin) → (({∅} ∈ Fin ∧ {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅}) → {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin)) |
20 | 13, 19 | ax-mp 5 | . . 3 ⊢ (({∅} ∈ Fin ∧ {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅}) → {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin) |
21 | 3, 4, 20 | mp2an 423 | . 2 ⊢ {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin |
22 | 21 | ssfilem 6841 | 1 ⊢ (𝜑 ∨ ¬ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∨ wo 698 ∀wal 1341 = wceq 1343 ∈ wcel 2136 {crab 2448 Vcvv 2726 ⊆ wss 3116 ∅c0 3409 {csn 3576 Fincfn 6706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-id 4271 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1o 6384 df-er 6501 df-en 6707 df-fin 6709 |
This theorem is referenced by: infiexmid 6843 |
Copyright terms: Public domain | W3C validator |