Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssfiexmid GIF version

Theorem ssfiexmid 6777
 Description: If any subset of a finite set is finite, excluded middle follows. One direction of Theorem 2.1 of [Bauer], p. 485. (Contributed by Jim Kingdon, 19-May-2020.)
Hypothesis
Ref Expression
ssfiexmid.1 𝑥𝑦((𝑥 ∈ Fin ∧ 𝑦𝑥) → 𝑦 ∈ Fin)
Assertion
Ref Expression
ssfiexmid (𝜑 ∨ ¬ 𝜑)
Distinct variable group:   𝜑,𝑥,𝑦

Proof of Theorem ssfiexmid
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 0ex 4062 . . . 4 ∅ ∈ V
2 snfig 6715 . . . 4 (∅ ∈ V → {∅} ∈ Fin)
31, 2ax-mp 5 . . 3 {∅} ∈ Fin
4 ssrab2 3186 . . 3 {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅}
5 ssfiexmid.1 . . . . 5 𝑥𝑦((𝑥 ∈ Fin ∧ 𝑦𝑥) → 𝑦 ∈ Fin)
6 p0ex 4119 . . . . . 6 {∅} ∈ V
7 eleq1 2203 . . . . . . . . 9 (𝑥 = {∅} → (𝑥 ∈ Fin ↔ {∅} ∈ Fin))
8 sseq2 3125 . . . . . . . . 9 (𝑥 = {∅} → (𝑦𝑥𝑦 ⊆ {∅}))
97, 8anbi12d 465 . . . . . . . 8 (𝑥 = {∅} → ((𝑥 ∈ Fin ∧ 𝑦𝑥) ↔ ({∅} ∈ Fin ∧ 𝑦 ⊆ {∅})))
109imbi1d 230 . . . . . . 7 (𝑥 = {∅} → (((𝑥 ∈ Fin ∧ 𝑦𝑥) → 𝑦 ∈ Fin) ↔ (({∅} ∈ Fin ∧ 𝑦 ⊆ {∅}) → 𝑦 ∈ Fin)))
1110albidv 1797 . . . . . 6 (𝑥 = {∅} → (∀𝑦((𝑥 ∈ Fin ∧ 𝑦𝑥) → 𝑦 ∈ Fin) ↔ ∀𝑦(({∅} ∈ Fin ∧ 𝑦 ⊆ {∅}) → 𝑦 ∈ Fin)))
126, 11spcv 2782 . . . . 5 (∀𝑥𝑦((𝑥 ∈ Fin ∧ 𝑦𝑥) → 𝑦 ∈ Fin) → ∀𝑦(({∅} ∈ Fin ∧ 𝑦 ⊆ {∅}) → 𝑦 ∈ Fin))
135, 12ax-mp 5 . . . 4 𝑦(({∅} ∈ Fin ∧ 𝑦 ⊆ {∅}) → 𝑦 ∈ Fin)
146rabex 4079 . . . . 5 {𝑧 ∈ {∅} ∣ 𝜑} ∈ V
15 sseq1 3124 . . . . . . 7 (𝑦 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑦 ⊆ {∅} ↔ {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅}))
1615anbi2d 460 . . . . . 6 (𝑦 = {𝑧 ∈ {∅} ∣ 𝜑} → (({∅} ∈ Fin ∧ 𝑦 ⊆ {∅}) ↔ ({∅} ∈ Fin ∧ {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅})))
17 eleq1 2203 . . . . . 6 (𝑦 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑦 ∈ Fin ↔ {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin))
1816, 17imbi12d 233 . . . . 5 (𝑦 = {𝑧 ∈ {∅} ∣ 𝜑} → ((({∅} ∈ Fin ∧ 𝑦 ⊆ {∅}) → 𝑦 ∈ Fin) ↔ (({∅} ∈ Fin ∧ {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅}) → {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin)))
1914, 18spcv 2782 . . . 4 (∀𝑦(({∅} ∈ Fin ∧ 𝑦 ⊆ {∅}) → 𝑦 ∈ Fin) → (({∅} ∈ Fin ∧ {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅}) → {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin))
2013, 19ax-mp 5 . . 3 (({∅} ∈ Fin ∧ {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅}) → {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin)
213, 4, 20mp2an 423 . 2 {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin
2221ssfilem 6776 1 (𝜑 ∨ ¬ 𝜑)
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   ∨ wo 698  ∀wal 1330   = wceq 1332   ∈ wcel 1481  {crab 2421  Vcvv 2689   ⊆ wss 3075  ∅c0 3367  {csn 3531  Fincfn 6641 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-nul 4061  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-iinf 4509 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2913  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-nul 3368  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-int 3779  df-br 3937  df-opab 3997  df-id 4222  df-suc 4300  df-iom 4512  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-f1 5135  df-fo 5136  df-f1o 5137  df-fv 5138  df-1o 6320  df-er 6436  df-en 6642  df-fin 6644 This theorem is referenced by:  infiexmid  6778
 Copyright terms: Public domain W3C validator