ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subsubrng2 Unicode version

Theorem subsubrng2 14027
Description: The set of subrings of a subring are the smaller subrings. (Contributed by AV, 15-Feb-2025.)
Hypothesis
Ref Expression
subsubrng.s  |-  S  =  ( Rs  A )
Assertion
Ref Expression
subsubrng2  |-  ( A  e.  (SubRng `  R
)  ->  (SubRng `  S
)  =  ( (SubRng `  R )  i^i  ~P A ) )

Proof of Theorem subsubrng2
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 subsubrng.s . . . 4  |-  S  =  ( Rs  A )
21subsubrng 14026 . . 3  |-  ( A  e.  (SubRng `  R
)  ->  ( a  e.  (SubRng `  S )  <->  ( a  e.  (SubRng `  R )  /\  a  C_  A ) ) )
3 elin 3358 . . . 4  |-  ( a  e.  ( (SubRng `  R )  i^i  ~P A )  <->  ( a  e.  (SubRng `  R )  /\  a  e.  ~P A ) )
4 velpw 3625 . . . . 5  |-  ( a  e.  ~P A  <->  a  C_  A )
54anbi2i 457 . . . 4  |-  ( ( a  e.  (SubRng `  R )  /\  a  e.  ~P A )  <->  ( a  e.  (SubRng `  R )  /\  a  C_  A ) )
63, 5bitr2i 185 . . 3  |-  ( ( a  e.  (SubRng `  R )  /\  a  C_  A )  <->  a  e.  ( (SubRng `  R )  i^i  ~P A ) )
72, 6bitrdi 196 . 2  |-  ( A  e.  (SubRng `  R
)  ->  ( a  e.  (SubRng `  S )  <->  a  e.  ( (SubRng `  R )  i^i  ~P A ) ) )
87eqrdv 2204 1  |-  ( A  e.  (SubRng `  R
)  ->  (SubRng `  S
)  =  ( (SubRng `  R )  i^i  ~P A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177    i^i cin 3167    C_ wss 3168   ~Pcpw 3618   ` cfv 5277  (class class class)co 5954   ↾s cress 12883  SubRngcsubrng 14009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-1re 8032  ax-addrcl 8035
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-fv 5285  df-ov 5957  df-oprab 5958  df-mpo 5959  df-inn 9050  df-2 9108  df-3 9109  df-ndx 12885  df-slot 12886  df-base 12888  df-sets 12889  df-iress 12890  df-plusg 12972  df-mulr 12973  df-subg 13556  df-abl 13673  df-rng 13745  df-subrng 14010
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator