ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrngpropd Unicode version

Theorem subrngpropd 14028
Description: If two structures have the same ring components (properties), they have the same set of subrings. (Contributed by AV, 17-Feb-2025.)
Hypotheses
Ref Expression
subrngpropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
subrngpropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
subrngpropd.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
subrngpropd.4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
Assertion
Ref Expression
subrngpropd  |-  ( ph  ->  (SubRng `  K )  =  (SubRng `  L )
)
Distinct variable groups:    x, y, B   
x, K, y    ph, x, y    x, L, y

Proof of Theorem subrngpropd
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 simp1 1000 . . . . 5  |-  ( ( K  e. Rng  /\  ( Ks  s )  e. Rng  /\  s  C_  ( Base `  K
) )  ->  K  e. Rng )
21a1i 9 . . . 4  |-  ( ph  ->  ( ( K  e. Rng  /\  ( Ks  s )  e. Rng  /\  s  C_  ( Base `  K ) )  ->  K  e. Rng ) )
3 simp1 1000 . . . . 5  |-  ( ( L  e. Rng  /\  ( Ls  s )  e. Rng  /\  s  C_  ( Base `  L
) )  ->  L  e. Rng )
4 subrngpropd.1 . . . . . 6  |-  ( ph  ->  B  =  ( Base `  K ) )
5 subrngpropd.2 . . . . . 6  |-  ( ph  ->  B  =  ( Base `  L ) )
6 subrngpropd.3 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
7 subrngpropd.4 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
84, 5, 6, 7rngpropd 13767 . . . . 5  |-  ( ph  ->  ( K  e. Rng  <->  L  e. Rng ) )
93, 8imbitrrid 156 . . . 4  |-  ( ph  ->  ( ( L  e. Rng  /\  ( Ls  s )  e. Rng  /\  s  C_  ( Base `  L ) )  ->  K  e. Rng ) )
108adantr 276 . . . . . 6  |-  ( (
ph  /\  K  e. Rng )  ->  ( K  e. Rng  <->  L  e. Rng ) )
114ineq2d 3376 . . . . . . . . 9  |-  ( ph  ->  ( s  i^i  B
)  =  ( s  i^i  ( Base `  K
) ) )
1211adantr 276 . . . . . . . 8  |-  ( (
ph  /\  K  e. Rng )  ->  ( s  i^i 
B )  =  ( s  i^i  ( Base `  K ) ) )
13 eqidd 2207 . . . . . . . . 9  |-  ( (
ph  /\  K  e. Rng )  ->  ( Ks  s )  =  ( Ks  s ) )
14 eqidd 2207 . . . . . . . . 9  |-  ( (
ph  /\  K  e. Rng )  ->  ( Base `  K
)  =  ( Base `  K ) )
15 simpr 110 . . . . . . . . 9  |-  ( (
ph  /\  K  e. Rng )  ->  K  e. Rng )
16 vex 2776 . . . . . . . . . 10  |-  s  e. 
_V
1716a1i 9 . . . . . . . . 9  |-  ( (
ph  /\  K  e. Rng )  ->  s  e.  _V )
1813, 14, 15, 17ressbasd 12949 . . . . . . . 8  |-  ( (
ph  /\  K  e. Rng )  ->  ( s  i^i  ( Base `  K
) )  =  (
Base `  ( Ks  s
) ) )
1912, 18eqtrd 2239 . . . . . . 7  |-  ( (
ph  /\  K  e. Rng )  ->  ( s  i^i 
B )  =  (
Base `  ( Ks  s
) ) )
205ineq2d 3376 . . . . . . . . 9  |-  ( ph  ->  ( s  i^i  B
)  =  ( s  i^i  ( Base `  L
) ) )
2120adantr 276 . . . . . . . 8  |-  ( (
ph  /\  K  e. Rng )  ->  ( s  i^i 
B )  =  ( s  i^i  ( Base `  L ) ) )
22 eqidd 2207 . . . . . . . . 9  |-  ( (
ph  /\  K  e. Rng )  ->  ( Ls  s )  =  ( Ls  s ) )
23 eqidd 2207 . . . . . . . . 9  |-  ( (
ph  /\  K  e. Rng )  ->  ( Base `  L
)  =  ( Base `  L ) )
248biimpa 296 . . . . . . . . 9  |-  ( (
ph  /\  K  e. Rng )  ->  L  e. Rng )
2522, 23, 24, 17ressbasd 12949 . . . . . . . 8  |-  ( (
ph  /\  K  e. Rng )  ->  ( s  i^i  ( Base `  L
) )  =  (
Base `  ( Ls  s
) ) )
2621, 25eqtrd 2239 . . . . . . 7  |-  ( (
ph  /\  K  e. Rng )  ->  ( s  i^i 
B )  =  (
Base `  ( Ls  s
) ) )
27 elinel2 3362 . . . . . . . . 9  |-  ( x  e.  ( s  i^i 
B )  ->  x  e.  B )
28 elinel2 3362 . . . . . . . . 9  |-  ( y  e.  ( s  i^i 
B )  ->  y  e.  B )
2927, 28anim12i 338 . . . . . . . 8  |-  ( ( x  e.  ( s  i^i  B )  /\  y  e.  ( s  i^i  B ) )  -> 
( x  e.  B  /\  y  e.  B
) )
306adantlr 477 . . . . . . . . 9  |-  ( ( ( ph  /\  K  e. Rng )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
31 eqidd 2207 . . . . . . . . . . 11  |-  ( (
ph  /\  K  e. Rng )  ->  ( +g  `  K
)  =  ( +g  `  K ) )
3213, 31, 17, 15ressplusgd 13011 . . . . . . . . . 10  |-  ( (
ph  /\  K  e. Rng )  ->  ( +g  `  K
)  =  ( +g  `  ( Ks  s ) ) )
3332oveqdr 5982 . . . . . . . . 9  |-  ( ( ( ph  /\  K  e. Rng )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  ( Ks  s ) ) y ) )
34 eqidd 2207 . . . . . . . . . . 11  |-  ( (
ph  /\  K  e. Rng )  ->  ( +g  `  L
)  =  ( +g  `  L ) )
3522, 34, 17, 24ressplusgd 13011 . . . . . . . . . 10  |-  ( (
ph  /\  K  e. Rng )  ->  ( +g  `  L
)  =  ( +g  `  ( Ls  s ) ) )
3635oveqdr 5982 . . . . . . . . 9  |-  ( ( ( ph  /\  K  e. Rng )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  L ) y )  =  ( x ( +g  `  ( Ls  s ) ) y ) )
3730, 33, 363eqtr3d 2247 . . . . . . . 8  |-  ( ( ( ph  /\  K  e. Rng )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  ( Ks  s ) ) y )  =  ( x ( +g  `  ( Ls  s ) ) y ) )
3829, 37sylan2 286 . . . . . . 7  |-  ( ( ( ph  /\  K  e. Rng )  /\  ( x  e.  ( s  i^i 
B )  /\  y  e.  ( s  i^i  B
) ) )  -> 
( x ( +g  `  ( Ks  s ) ) y )  =  ( x ( +g  `  ( Ls  s ) ) y ) )
397adantlr 477 . . . . . . . . 9  |-  ( ( ( ph  /\  K  e. Rng )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
40 eqid 2206 . . . . . . . . . . . 12  |-  ( Ks  s )  =  ( Ks  s )
41 eqid 2206 . . . . . . . . . . . 12  |-  ( .r
`  K )  =  ( .r `  K
)
4240, 41ressmulrg 13027 . . . . . . . . . . 11  |-  ( ( s  e.  _V  /\  K  e. Rng )  ->  ( .r `  K )  =  ( .r `  ( Ks  s ) ) )
4317, 15, 42syl2anc 411 . . . . . . . . . 10  |-  ( (
ph  /\  K  e. Rng )  ->  ( .r `  K )  =  ( .r `  ( Ks  s ) ) )
4443oveqdr 5982 . . . . . . . . 9  |-  ( ( ( ph  /\  K  e. Rng )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  ( Ks  s ) ) y ) )
45 eqid 2206 . . . . . . . . . . . 12  |-  ( Ls  s )  =  ( Ls  s )
46 eqid 2206 . . . . . . . . . . . 12  |-  ( .r
`  L )  =  ( .r `  L
)
4745, 46ressmulrg 13027 . . . . . . . . . . 11  |-  ( ( s  e.  _V  /\  L  e. Rng )  ->  ( .r `  L )  =  ( .r `  ( Ls  s ) ) )
4817, 24, 47syl2anc 411 . . . . . . . . . 10  |-  ( (
ph  /\  K  e. Rng )  ->  ( .r `  L )  =  ( .r `  ( Ls  s ) ) )
4948oveqdr 5982 . . . . . . . . 9  |-  ( ( ( ph  /\  K  e. Rng )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  L ) y )  =  ( x ( .r `  ( Ls  s ) ) y ) )
5039, 44, 493eqtr3d 2247 . . . . . . . 8  |-  ( ( ( ph  /\  K  e. Rng )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  ( Ks  s ) ) y )  =  ( x ( .r
`  ( Ls  s ) ) y ) )
5129, 50sylan2 286 . . . . . . 7  |-  ( ( ( ph  /\  K  e. Rng )  /\  ( x  e.  ( s  i^i 
B )  /\  y  e.  ( s  i^i  B
) ) )  -> 
( x ( .r
`  ( Ks  s ) ) y )  =  ( x ( .r
`  ( Ls  s ) ) y ) )
5219, 26, 38, 51rngpropd 13767 . . . . . 6  |-  ( (
ph  /\  K  e. Rng )  ->  ( ( Ks  s )  e. Rng  <->  ( Ls  s
)  e. Rng ) )
534, 5eqtr3d 2241 . . . . . . . 8  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  L ) )
5453sseq2d 3225 . . . . . . 7  |-  ( ph  ->  ( s  C_  ( Base `  K )  <->  s  C_  ( Base `  L )
) )
5554adantr 276 . . . . . 6  |-  ( (
ph  /\  K  e. Rng )  ->  ( s  C_  ( Base `  K )  <->  s 
C_  ( Base `  L
) ) )
5610, 52, 553anbi123d 1325 . . . . 5  |-  ( (
ph  /\  K  e. Rng )  ->  ( ( K  e. Rng  /\  ( Ks  s
)  e. Rng  /\  s  C_  ( Base `  K
) )  <->  ( L  e. Rng  /\  ( Ls  s )  e. Rng  /\  s  C_  ( Base `  L )
) ) )
5756ex 115 . . . 4  |-  ( ph  ->  ( K  e. Rng  ->  ( ( K  e. Rng  /\  ( Ks  s )  e. Rng  /\  s  C_  ( Base `  K ) )  <->  ( L  e. Rng  /\  ( Ls  s )  e. Rng  /\  s  C_  ( Base `  L )
) ) ) )
582, 9, 57pm5.21ndd 707 . . 3  |-  ( ph  ->  ( ( K  e. Rng  /\  ( Ks  s )  e. Rng  /\  s  C_  ( Base `  K ) )  <->  ( L  e. Rng  /\  ( Ls  s )  e. Rng  /\  s  C_  ( Base `  L )
) ) )
59 eqid 2206 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
6059issubrng 14011 . . 3  |-  ( s  e.  (SubRng `  K
)  <->  ( K  e. Rng  /\  ( Ks  s )  e. Rng  /\  s  C_  ( Base `  K ) ) )
61 eqid 2206 . . . 4  |-  ( Base `  L )  =  (
Base `  L )
6261issubrng 14011 . . 3  |-  ( s  e.  (SubRng `  L
)  <->  ( L  e. Rng  /\  ( Ls  s )  e. Rng  /\  s  C_  ( Base `  L ) ) )
6358, 60, 623bitr4g 223 . 2  |-  ( ph  ->  ( s  e.  (SubRng `  K )  <->  s  e.  (SubRng `  L ) ) )
6463eqrdv 2204 1  |-  ( ph  ->  (SubRng `  K )  =  (SubRng `  L )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2177   _Vcvv 2773    i^i cin 3167    C_ wss 3168   ` cfv 5277  (class class class)co 5954   Basecbs 12882   ↾s cress 12883   +g cplusg 12959   .rcmulr 12960  Rngcrng 13744  SubRngcsubrng 14009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-addcom 8038  ax-addass 8040  ax-i2m1 8043  ax-0lt1 8044  ax-0id 8046  ax-rnegex 8047  ax-pre-ltirr 8050  ax-pre-lttrn 8052  ax-pre-ltadd 8054
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-pnf 8122  df-mnf 8123  df-ltxr 8125  df-inn 9050  df-2 9108  df-3 9109  df-ndx 12885  df-slot 12886  df-base 12888  df-sets 12889  df-iress 12890  df-plusg 12972  df-mulr 12973  df-0g 13140  df-mgm 13238  df-sgrp 13284  df-mnd 13299  df-grp 13385  df-cmn 13672  df-abl 13673  df-mgp 13733  df-rng 13745  df-subrng 14010
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator