ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrngpropd Unicode version

Theorem subrngpropd 13560
Description: If two structures have the same ring components (properties), they have the same set of subrings. (Contributed by AV, 17-Feb-2025.)
Hypotheses
Ref Expression
subrngpropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
subrngpropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
subrngpropd.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
subrngpropd.4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
Assertion
Ref Expression
subrngpropd  |-  ( ph  ->  (SubRng `  K )  =  (SubRng `  L )
)
Distinct variable groups:    x, y, B   
x, K, y    ph, x, y    x, L, y

Proof of Theorem subrngpropd
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 simp1 999 . . . . 5  |-  ( ( K  e. Rng  /\  ( Ks  s )  e. Rng  /\  s  C_  ( Base `  K
) )  ->  K  e. Rng )
21a1i 9 . . . 4  |-  ( ph  ->  ( ( K  e. Rng  /\  ( Ks  s )  e. Rng  /\  s  C_  ( Base `  K ) )  ->  K  e. Rng ) )
3 simp1 999 . . . . 5  |-  ( ( L  e. Rng  /\  ( Ls  s )  e. Rng  /\  s  C_  ( Base `  L
) )  ->  L  e. Rng )
4 subrngpropd.1 . . . . . 6  |-  ( ph  ->  B  =  ( Base `  K ) )
5 subrngpropd.2 . . . . . 6  |-  ( ph  ->  B  =  ( Base `  L ) )
6 subrngpropd.3 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
7 subrngpropd.4 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
84, 5, 6, 7rngpropd 13306 . . . . 5  |-  ( ph  ->  ( K  e. Rng  <->  L  e. Rng ) )
93, 8imbitrrid 156 . . . 4  |-  ( ph  ->  ( ( L  e. Rng  /\  ( Ls  s )  e. Rng  /\  s  C_  ( Base `  L ) )  ->  K  e. Rng ) )
108adantr 276 . . . . . 6  |-  ( (
ph  /\  K  e. Rng )  ->  ( K  e. Rng  <->  L  e. Rng ) )
114ineq2d 3351 . . . . . . . . 9  |-  ( ph  ->  ( s  i^i  B
)  =  ( s  i^i  ( Base `  K
) ) )
1211adantr 276 . . . . . . . 8  |-  ( (
ph  /\  K  e. Rng )  ->  ( s  i^i 
B )  =  ( s  i^i  ( Base `  K ) ) )
13 eqidd 2190 . . . . . . . . 9  |-  ( (
ph  /\  K  e. Rng )  ->  ( Ks  s )  =  ( Ks  s ) )
14 eqidd 2190 . . . . . . . . 9  |-  ( (
ph  /\  K  e. Rng )  ->  ( Base `  K
)  =  ( Base `  K ) )
15 simpr 110 . . . . . . . . 9  |-  ( (
ph  /\  K  e. Rng )  ->  K  e. Rng )
16 vex 2755 . . . . . . . . . 10  |-  s  e. 
_V
1716a1i 9 . . . . . . . . 9  |-  ( (
ph  /\  K  e. Rng )  ->  s  e.  _V )
1813, 14, 15, 17ressbasd 12576 . . . . . . . 8  |-  ( (
ph  /\  K  e. Rng )  ->  ( s  i^i  ( Base `  K
) )  =  (
Base `  ( Ks  s
) ) )
1912, 18eqtrd 2222 . . . . . . 7  |-  ( (
ph  /\  K  e. Rng )  ->  ( s  i^i 
B )  =  (
Base `  ( Ks  s
) ) )
205ineq2d 3351 . . . . . . . . 9  |-  ( ph  ->  ( s  i^i  B
)  =  ( s  i^i  ( Base `  L
) ) )
2120adantr 276 . . . . . . . 8  |-  ( (
ph  /\  K  e. Rng )  ->  ( s  i^i 
B )  =  ( s  i^i  ( Base `  L ) ) )
22 eqidd 2190 . . . . . . . . 9  |-  ( (
ph  /\  K  e. Rng )  ->  ( Ls  s )  =  ( Ls  s ) )
23 eqidd 2190 . . . . . . . . 9  |-  ( (
ph  /\  K  e. Rng )  ->  ( Base `  L
)  =  ( Base `  L ) )
248biimpa 296 . . . . . . . . 9  |-  ( (
ph  /\  K  e. Rng )  ->  L  e. Rng )
2522, 23, 24, 17ressbasd 12576 . . . . . . . 8  |-  ( (
ph  /\  K  e. Rng )  ->  ( s  i^i  ( Base `  L
) )  =  (
Base `  ( Ls  s
) ) )
2621, 25eqtrd 2222 . . . . . . 7  |-  ( (
ph  /\  K  e. Rng )  ->  ( s  i^i 
B )  =  (
Base `  ( Ls  s
) ) )
27 elinel2 3337 . . . . . . . . 9  |-  ( x  e.  ( s  i^i 
B )  ->  x  e.  B )
28 elinel2 3337 . . . . . . . . 9  |-  ( y  e.  ( s  i^i 
B )  ->  y  e.  B )
2927, 28anim12i 338 . . . . . . . 8  |-  ( ( x  e.  ( s  i^i  B )  /\  y  e.  ( s  i^i  B ) )  -> 
( x  e.  B  /\  y  e.  B
) )
306adantlr 477 . . . . . . . . 9  |-  ( ( ( ph  /\  K  e. Rng )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
31 eqidd 2190 . . . . . . . . . . 11  |-  ( (
ph  /\  K  e. Rng )  ->  ( +g  `  K
)  =  ( +g  `  K ) )
3213, 31, 17, 15ressplusgd 12637 . . . . . . . . . 10  |-  ( (
ph  /\  K  e. Rng )  ->  ( +g  `  K
)  =  ( +g  `  ( Ks  s ) ) )
3332oveqdr 5923 . . . . . . . . 9  |-  ( ( ( ph  /\  K  e. Rng )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  ( Ks  s ) ) y ) )
34 eqidd 2190 . . . . . . . . . . 11  |-  ( (
ph  /\  K  e. Rng )  ->  ( +g  `  L
)  =  ( +g  `  L ) )
3522, 34, 17, 24ressplusgd 12637 . . . . . . . . . 10  |-  ( (
ph  /\  K  e. Rng )  ->  ( +g  `  L
)  =  ( +g  `  ( Ls  s ) ) )
3635oveqdr 5923 . . . . . . . . 9  |-  ( ( ( ph  /\  K  e. Rng )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  L ) y )  =  ( x ( +g  `  ( Ls  s ) ) y ) )
3730, 33, 363eqtr3d 2230 . . . . . . . 8  |-  ( ( ( ph  /\  K  e. Rng )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  ( Ks  s ) ) y )  =  ( x ( +g  `  ( Ls  s ) ) y ) )
3829, 37sylan2 286 . . . . . . 7  |-  ( ( ( ph  /\  K  e. Rng )  /\  ( x  e.  ( s  i^i 
B )  /\  y  e.  ( s  i^i  B
) ) )  -> 
( x ( +g  `  ( Ks  s ) ) y )  =  ( x ( +g  `  ( Ls  s ) ) y ) )
397adantlr 477 . . . . . . . . 9  |-  ( ( ( ph  /\  K  e. Rng )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
40 eqid 2189 . . . . . . . . . . . 12  |-  ( Ks  s )  =  ( Ks  s )
41 eqid 2189 . . . . . . . . . . . 12  |-  ( .r
`  K )  =  ( .r `  K
)
4240, 41ressmulrg 12653 . . . . . . . . . . 11  |-  ( ( s  e.  _V  /\  K  e. Rng )  ->  ( .r `  K )  =  ( .r `  ( Ks  s ) ) )
4317, 15, 42syl2anc 411 . . . . . . . . . 10  |-  ( (
ph  /\  K  e. Rng )  ->  ( .r `  K )  =  ( .r `  ( Ks  s ) ) )
4443oveqdr 5923 . . . . . . . . 9  |-  ( ( ( ph  /\  K  e. Rng )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  ( Ks  s ) ) y ) )
45 eqid 2189 . . . . . . . . . . . 12  |-  ( Ls  s )  =  ( Ls  s )
46 eqid 2189 . . . . . . . . . . . 12  |-  ( .r
`  L )  =  ( .r `  L
)
4745, 46ressmulrg 12653 . . . . . . . . . . 11  |-  ( ( s  e.  _V  /\  L  e. Rng )  ->  ( .r `  L )  =  ( .r `  ( Ls  s ) ) )
4817, 24, 47syl2anc 411 . . . . . . . . . 10  |-  ( (
ph  /\  K  e. Rng )  ->  ( .r `  L )  =  ( .r `  ( Ls  s ) ) )
4948oveqdr 5923 . . . . . . . . 9  |-  ( ( ( ph  /\  K  e. Rng )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  L ) y )  =  ( x ( .r `  ( Ls  s ) ) y ) )
5039, 44, 493eqtr3d 2230 . . . . . . . 8  |-  ( ( ( ph  /\  K  e. Rng )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  ( Ks  s ) ) y )  =  ( x ( .r
`  ( Ls  s ) ) y ) )
5129, 50sylan2 286 . . . . . . 7  |-  ( ( ( ph  /\  K  e. Rng )  /\  ( x  e.  ( s  i^i 
B )  /\  y  e.  ( s  i^i  B
) ) )  -> 
( x ( .r
`  ( Ks  s ) ) y )  =  ( x ( .r
`  ( Ls  s ) ) y ) )
5219, 26, 38, 51rngpropd 13306 . . . . . 6  |-  ( (
ph  /\  K  e. Rng )  ->  ( ( Ks  s )  e. Rng  <->  ( Ls  s
)  e. Rng ) )
534, 5eqtr3d 2224 . . . . . . . 8  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  L ) )
5453sseq2d 3200 . . . . . . 7  |-  ( ph  ->  ( s  C_  ( Base `  K )  <->  s  C_  ( Base `  L )
) )
5554adantr 276 . . . . . 6  |-  ( (
ph  /\  K  e. Rng )  ->  ( s  C_  ( Base `  K )  <->  s 
C_  ( Base `  L
) ) )
5610, 52, 553anbi123d 1323 . . . . 5  |-  ( (
ph  /\  K  e. Rng )  ->  ( ( K  e. Rng  /\  ( Ks  s
)  e. Rng  /\  s  C_  ( Base `  K
) )  <->  ( L  e. Rng  /\  ( Ls  s )  e. Rng  /\  s  C_  ( Base `  L )
) ) )
5756ex 115 . . . 4  |-  ( ph  ->  ( K  e. Rng  ->  ( ( K  e. Rng  /\  ( Ks  s )  e. Rng  /\  s  C_  ( Base `  K ) )  <->  ( L  e. Rng  /\  ( Ls  s )  e. Rng  /\  s  C_  ( Base `  L )
) ) ) )
582, 9, 57pm5.21ndd 706 . . 3  |-  ( ph  ->  ( ( K  e. Rng  /\  ( Ks  s )  e. Rng  /\  s  C_  ( Base `  K ) )  <->  ( L  e. Rng  /\  ( Ls  s )  e. Rng  /\  s  C_  ( Base `  L )
) ) )
59 eqid 2189 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
6059issubrng 13543 . . 3  |-  ( s  e.  (SubRng `  K
)  <->  ( K  e. Rng  /\  ( Ks  s )  e. Rng  /\  s  C_  ( Base `  K ) ) )
61 eqid 2189 . . . 4  |-  ( Base `  L )  =  (
Base `  L )
6261issubrng 13543 . . 3  |-  ( s  e.  (SubRng `  L
)  <->  ( L  e. Rng  /\  ( Ls  s )  e. Rng  /\  s  C_  ( Base `  L ) ) )
6358, 60, 623bitr4g 223 . 2  |-  ( ph  ->  ( s  e.  (SubRng `  K )  <->  s  e.  (SubRng `  L ) ) )
6463eqrdv 2187 1  |-  ( ph  ->  (SubRng `  K )  =  (SubRng `  L )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2160   _Vcvv 2752    i^i cin 3143    C_ wss 3144   ` cfv 5235  (class class class)co 5895   Basecbs 12511   ↾s cress 12512   +g cplusg 12586   .rcmulr 12587  Rngcrng 13283  SubRngcsubrng 13541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7931  ax-resscn 7932  ax-1cn 7933  ax-1re 7934  ax-icn 7935  ax-addcl 7936  ax-addrcl 7937  ax-mulcl 7938  ax-addcom 7940  ax-addass 7942  ax-i2m1 7945  ax-0lt1 7946  ax-0id 7948  ax-rnegex 7949  ax-pre-ltirr 7952  ax-pre-lttrn 7954  ax-pre-ltadd 7956
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-fv 5243  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-pnf 8023  df-mnf 8024  df-ltxr 8026  df-inn 8949  df-2 9007  df-3 9008  df-ndx 12514  df-slot 12515  df-base 12517  df-sets 12518  df-iress 12519  df-plusg 12599  df-mulr 12600  df-0g 12760  df-mgm 12829  df-sgrp 12862  df-mnd 12875  df-grp 12945  df-cmn 13222  df-abl 13223  df-mgp 13272  df-rng 13284  df-subrng 13542
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator