ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrngpropd Unicode version

Theorem subrngpropd 13848
Description: If two structures have the same ring components (properties), they have the same set of subrings. (Contributed by AV, 17-Feb-2025.)
Hypotheses
Ref Expression
subrngpropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
subrngpropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
subrngpropd.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
subrngpropd.4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
Assertion
Ref Expression
subrngpropd  |-  ( ph  ->  (SubRng `  K )  =  (SubRng `  L )
)
Distinct variable groups:    x, y, B   
x, K, y    ph, x, y    x, L, y

Proof of Theorem subrngpropd
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 simp1 999 . . . . 5  |-  ( ( K  e. Rng  /\  ( Ks  s )  e. Rng  /\  s  C_  ( Base `  K
) )  ->  K  e. Rng )
21a1i 9 . . . 4  |-  ( ph  ->  ( ( K  e. Rng  /\  ( Ks  s )  e. Rng  /\  s  C_  ( Base `  K ) )  ->  K  e. Rng ) )
3 simp1 999 . . . . 5  |-  ( ( L  e. Rng  /\  ( Ls  s )  e. Rng  /\  s  C_  ( Base `  L
) )  ->  L  e. Rng )
4 subrngpropd.1 . . . . . 6  |-  ( ph  ->  B  =  ( Base `  K ) )
5 subrngpropd.2 . . . . . 6  |-  ( ph  ->  B  =  ( Base `  L ) )
6 subrngpropd.3 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
7 subrngpropd.4 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
84, 5, 6, 7rngpropd 13587 . . . . 5  |-  ( ph  ->  ( K  e. Rng  <->  L  e. Rng ) )
93, 8imbitrrid 156 . . . 4  |-  ( ph  ->  ( ( L  e. Rng  /\  ( Ls  s )  e. Rng  /\  s  C_  ( Base `  L ) )  ->  K  e. Rng ) )
108adantr 276 . . . . . 6  |-  ( (
ph  /\  K  e. Rng )  ->  ( K  e. Rng  <->  L  e. Rng ) )
114ineq2d 3365 . . . . . . . . 9  |-  ( ph  ->  ( s  i^i  B
)  =  ( s  i^i  ( Base `  K
) ) )
1211adantr 276 . . . . . . . 8  |-  ( (
ph  /\  K  e. Rng )  ->  ( s  i^i 
B )  =  ( s  i^i  ( Base `  K ) ) )
13 eqidd 2197 . . . . . . . . 9  |-  ( (
ph  /\  K  e. Rng )  ->  ( Ks  s )  =  ( Ks  s ) )
14 eqidd 2197 . . . . . . . . 9  |-  ( (
ph  /\  K  e. Rng )  ->  ( Base `  K
)  =  ( Base `  K ) )
15 simpr 110 . . . . . . . . 9  |-  ( (
ph  /\  K  e. Rng )  ->  K  e. Rng )
16 vex 2766 . . . . . . . . . 10  |-  s  e. 
_V
1716a1i 9 . . . . . . . . 9  |-  ( (
ph  /\  K  e. Rng )  ->  s  e.  _V )
1813, 14, 15, 17ressbasd 12770 . . . . . . . 8  |-  ( (
ph  /\  K  e. Rng )  ->  ( s  i^i  ( Base `  K
) )  =  (
Base `  ( Ks  s
) ) )
1912, 18eqtrd 2229 . . . . . . 7  |-  ( (
ph  /\  K  e. Rng )  ->  ( s  i^i 
B )  =  (
Base `  ( Ks  s
) ) )
205ineq2d 3365 . . . . . . . . 9  |-  ( ph  ->  ( s  i^i  B
)  =  ( s  i^i  ( Base `  L
) ) )
2120adantr 276 . . . . . . . 8  |-  ( (
ph  /\  K  e. Rng )  ->  ( s  i^i 
B )  =  ( s  i^i  ( Base `  L ) ) )
22 eqidd 2197 . . . . . . . . 9  |-  ( (
ph  /\  K  e. Rng )  ->  ( Ls  s )  =  ( Ls  s ) )
23 eqidd 2197 . . . . . . . . 9  |-  ( (
ph  /\  K  e. Rng )  ->  ( Base `  L
)  =  ( Base `  L ) )
248biimpa 296 . . . . . . . . 9  |-  ( (
ph  /\  K  e. Rng )  ->  L  e. Rng )
2522, 23, 24, 17ressbasd 12770 . . . . . . . 8  |-  ( (
ph  /\  K  e. Rng )  ->  ( s  i^i  ( Base `  L
) )  =  (
Base `  ( Ls  s
) ) )
2621, 25eqtrd 2229 . . . . . . 7  |-  ( (
ph  /\  K  e. Rng )  ->  ( s  i^i 
B )  =  (
Base `  ( Ls  s
) ) )
27 elinel2 3351 . . . . . . . . 9  |-  ( x  e.  ( s  i^i 
B )  ->  x  e.  B )
28 elinel2 3351 . . . . . . . . 9  |-  ( y  e.  ( s  i^i 
B )  ->  y  e.  B )
2927, 28anim12i 338 . . . . . . . 8  |-  ( ( x  e.  ( s  i^i  B )  /\  y  e.  ( s  i^i  B ) )  -> 
( x  e.  B  /\  y  e.  B
) )
306adantlr 477 . . . . . . . . 9  |-  ( ( ( ph  /\  K  e. Rng )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
31 eqidd 2197 . . . . . . . . . . 11  |-  ( (
ph  /\  K  e. Rng )  ->  ( +g  `  K
)  =  ( +g  `  K ) )
3213, 31, 17, 15ressplusgd 12831 . . . . . . . . . 10  |-  ( (
ph  /\  K  e. Rng )  ->  ( +g  `  K
)  =  ( +g  `  ( Ks  s ) ) )
3332oveqdr 5953 . . . . . . . . 9  |-  ( ( ( ph  /\  K  e. Rng )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  ( Ks  s ) ) y ) )
34 eqidd 2197 . . . . . . . . . . 11  |-  ( (
ph  /\  K  e. Rng )  ->  ( +g  `  L
)  =  ( +g  `  L ) )
3522, 34, 17, 24ressplusgd 12831 . . . . . . . . . 10  |-  ( (
ph  /\  K  e. Rng )  ->  ( +g  `  L
)  =  ( +g  `  ( Ls  s ) ) )
3635oveqdr 5953 . . . . . . . . 9  |-  ( ( ( ph  /\  K  e. Rng )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  L ) y )  =  ( x ( +g  `  ( Ls  s ) ) y ) )
3730, 33, 363eqtr3d 2237 . . . . . . . 8  |-  ( ( ( ph  /\  K  e. Rng )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  ( Ks  s ) ) y )  =  ( x ( +g  `  ( Ls  s ) ) y ) )
3829, 37sylan2 286 . . . . . . 7  |-  ( ( ( ph  /\  K  e. Rng )  /\  ( x  e.  ( s  i^i 
B )  /\  y  e.  ( s  i^i  B
) ) )  -> 
( x ( +g  `  ( Ks  s ) ) y )  =  ( x ( +g  `  ( Ls  s ) ) y ) )
397adantlr 477 . . . . . . . . 9  |-  ( ( ( ph  /\  K  e. Rng )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
40 eqid 2196 . . . . . . . . . . . 12  |-  ( Ks  s )  =  ( Ks  s )
41 eqid 2196 . . . . . . . . . . . 12  |-  ( .r
`  K )  =  ( .r `  K
)
4240, 41ressmulrg 12847 . . . . . . . . . . 11  |-  ( ( s  e.  _V  /\  K  e. Rng )  ->  ( .r `  K )  =  ( .r `  ( Ks  s ) ) )
4317, 15, 42syl2anc 411 . . . . . . . . . 10  |-  ( (
ph  /\  K  e. Rng )  ->  ( .r `  K )  =  ( .r `  ( Ks  s ) ) )
4443oveqdr 5953 . . . . . . . . 9  |-  ( ( ( ph  /\  K  e. Rng )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  ( Ks  s ) ) y ) )
45 eqid 2196 . . . . . . . . . . . 12  |-  ( Ls  s )  =  ( Ls  s )
46 eqid 2196 . . . . . . . . . . . 12  |-  ( .r
`  L )  =  ( .r `  L
)
4745, 46ressmulrg 12847 . . . . . . . . . . 11  |-  ( ( s  e.  _V  /\  L  e. Rng )  ->  ( .r `  L )  =  ( .r `  ( Ls  s ) ) )
4817, 24, 47syl2anc 411 . . . . . . . . . 10  |-  ( (
ph  /\  K  e. Rng )  ->  ( .r `  L )  =  ( .r `  ( Ls  s ) ) )
4948oveqdr 5953 . . . . . . . . 9  |-  ( ( ( ph  /\  K  e. Rng )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  L ) y )  =  ( x ( .r `  ( Ls  s ) ) y ) )
5039, 44, 493eqtr3d 2237 . . . . . . . 8  |-  ( ( ( ph  /\  K  e. Rng )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  ( Ks  s ) ) y )  =  ( x ( .r
`  ( Ls  s ) ) y ) )
5129, 50sylan2 286 . . . . . . 7  |-  ( ( ( ph  /\  K  e. Rng )  /\  ( x  e.  ( s  i^i 
B )  /\  y  e.  ( s  i^i  B
) ) )  -> 
( x ( .r
`  ( Ks  s ) ) y )  =  ( x ( .r
`  ( Ls  s ) ) y ) )
5219, 26, 38, 51rngpropd 13587 . . . . . 6  |-  ( (
ph  /\  K  e. Rng )  ->  ( ( Ks  s )  e. Rng  <->  ( Ls  s
)  e. Rng ) )
534, 5eqtr3d 2231 . . . . . . . 8  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  L ) )
5453sseq2d 3214 . . . . . . 7  |-  ( ph  ->  ( s  C_  ( Base `  K )  <->  s  C_  ( Base `  L )
) )
5554adantr 276 . . . . . 6  |-  ( (
ph  /\  K  e. Rng )  ->  ( s  C_  ( Base `  K )  <->  s 
C_  ( Base `  L
) ) )
5610, 52, 553anbi123d 1323 . . . . 5  |-  ( (
ph  /\  K  e. Rng )  ->  ( ( K  e. Rng  /\  ( Ks  s
)  e. Rng  /\  s  C_  ( Base `  K
) )  <->  ( L  e. Rng  /\  ( Ls  s )  e. Rng  /\  s  C_  ( Base `  L )
) ) )
5756ex 115 . . . 4  |-  ( ph  ->  ( K  e. Rng  ->  ( ( K  e. Rng  /\  ( Ks  s )  e. Rng  /\  s  C_  ( Base `  K ) )  <->  ( L  e. Rng  /\  ( Ls  s )  e. Rng  /\  s  C_  ( Base `  L )
) ) ) )
582, 9, 57pm5.21ndd 706 . . 3  |-  ( ph  ->  ( ( K  e. Rng  /\  ( Ks  s )  e. Rng  /\  s  C_  ( Base `  K ) )  <->  ( L  e. Rng  /\  ( Ls  s )  e. Rng  /\  s  C_  ( Base `  L )
) ) )
59 eqid 2196 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
6059issubrng 13831 . . 3  |-  ( s  e.  (SubRng `  K
)  <->  ( K  e. Rng  /\  ( Ks  s )  e. Rng  /\  s  C_  ( Base `  K ) ) )
61 eqid 2196 . . . 4  |-  ( Base `  L )  =  (
Base `  L )
6261issubrng 13831 . . 3  |-  ( s  e.  (SubRng `  L
)  <->  ( L  e. Rng  /\  ( Ls  s )  e. Rng  /\  s  C_  ( Base `  L ) ) )
6358, 60, 623bitr4g 223 . 2  |-  ( ph  ->  ( s  e.  (SubRng `  K )  <->  s  e.  (SubRng `  L ) ) )
6463eqrdv 2194 1  |-  ( ph  ->  (SubRng `  K )  =  (SubRng `  L )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   _Vcvv 2763    i^i cin 3156    C_ wss 3157   ` cfv 5259  (class class class)co 5925   Basecbs 12703   ↾s cress 12704   +g cplusg 12780   .rcmulr 12781  Rngcrng 13564  SubRngcsubrng 13829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-mulr 12794  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-cmn 13492  df-abl 13493  df-mgp 13553  df-rng 13565  df-subrng 13830
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator