ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xleadd1a Unicode version

Theorem xleadd1a 9873
Description: Extended real version of leadd1 8387; note that the converse implication is not true, unlike the real version (for example  0  <  1 but  ( 1 +e +oo )  <_  ( 0 +e +oo )). (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xleadd1a  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( A +e C )  <_  ( B +e C ) )

Proof of Theorem xleadd1a
StepHypRef Expression
1 simplrr 536 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  e.  RR )  ->  A  e.  RR )
2 simpr 110 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  e.  RR )  ->  B  e.  RR )
3 simplrl 535 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  e.  RR )  ->  C  e.  RR )
4 simpllr 534 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  e.  RR )  ->  A  <_  B )
51, 2, 3, 4leadd1dd 8516 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  e.  RR )  ->  ( A  +  C
)  <_  ( B  +  C ) )
61, 3rexaddd 9854 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  e.  RR )  ->  ( A +e
C )  =  ( A  +  C ) )
72, 3rexaddd 9854 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  e.  RR )  ->  ( B +e
C )  =  ( B  +  C ) )
85, 6, 73brtr4d 4036 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  e.  RR )  ->  ( A +e
C )  <_  ( B +e C ) )
9 simpl1 1000 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  A  e.  RR* )
10 simpl3 1002 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  C  e.  RR* )
11 xaddcl 9860 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  C  e.  RR* )  ->  ( A +e C )  e.  RR* )
129, 10, 11syl2anc 411 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( A +e C )  e.  RR* )
1312ad2antrr 488 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  = +oo )  ->  ( A +e
C )  e.  RR* )
14 pnfge 9789 . . . . . . 7  |-  ( ( A +e C )  e.  RR*  ->  ( A +e C )  <_ +oo )
1513, 14syl 14 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  = +oo )  ->  ( A +e
C )  <_ +oo )
16 oveq1 5882 . . . . . . 7  |-  ( B  = +oo  ->  ( B +e C )  =  ( +oo +e C ) )
17 rexr 8003 . . . . . . . . 9  |-  ( C  e.  RR  ->  C  e.  RR* )
18 renemnf 8006 . . . . . . . . 9  |-  ( C  e.  RR  ->  C  =/= -oo )
19 xaddpnf2 9847 . . . . . . . . 9  |-  ( ( C  e.  RR*  /\  C  =/= -oo )  ->  ( +oo +e C )  = +oo )
2017, 18, 19syl2anc 411 . . . . . . . 8  |-  ( C  e.  RR  ->  ( +oo +e C )  = +oo )
2120ad2antrl 490 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  ( C  e.  RR  /\  A  e.  RR ) )  -> 
( +oo +e C )  = +oo )
2216, 21sylan9eqr 2232 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  = +oo )  ->  ( B +e
C )  = +oo )
2315, 22breqtrrd 4032 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  = +oo )  ->  ( A +e
C )  <_  ( B +e C ) )
2412adantr 276 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  B  = -oo )  ->  ( A +e C )  e.  RR* )
2524xrleidd 9801 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  B  = -oo )  ->  ( A +e C )  <_  ( A +e C ) )
26 simplr 528 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  B  = -oo )  ->  A  <_  B )
27 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  B  = -oo )  ->  B  = -oo )
289adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  B  = -oo )  ->  A  e. 
RR* )
29 mnfle 9792 . . . . . . . . . . 11  |-  ( A  e.  RR*  -> -oo  <_  A )
3028, 29syl 14 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  B  = -oo )  -> -oo  <_  A )
3127, 30eqbrtrd 4026 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  B  = -oo )  ->  B  <_  A )
32 simpl2 1001 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  B  e.  RR* )
33 xrletri3 9804 . . . . . . . . . . 11  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  =  B  <->  ( A  <_  B  /\  B  <_  A ) ) )
349, 32, 33syl2anc 411 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( A  =  B  <->  ( A  <_  B  /\  B  <_  A ) ) )
3534adantr 276 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  B  = -oo )  ->  ( A  =  B  <->  ( A  <_  B  /\  B  <_  A ) ) )
3626, 31, 35mpbir2and 944 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  B  = -oo )  ->  A  =  B )
3736oveq1d 5890 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  B  = -oo )  ->  ( A +e C )  =  ( B +e C ) )
3825, 37breqtrd 4030 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  B  = -oo )  ->  ( A +e C )  <_  ( B +e C ) )
3938adantlr 477 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  = -oo )  ->  ( A +e
C )  <_  ( B +e C ) )
40 elxr 9776 . . . . . . 7  |-  ( B  e.  RR*  <->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
4132, 40sylib 122 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
4241adantr 276 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  ( C  e.  RR  /\  A  e.  RR ) )  -> 
( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
438, 23, 39, 42mpjao3dan 1307 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  ( C  e.  RR  /\  A  e.  RR ) )  -> 
( A +e
C )  <_  ( B +e C ) )
4443anassrs 400 . . 3  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  e.  RR )  /\  A  e.  RR )  ->  ( A +e C )  <_  ( B +e C ) )
4512adantr 276 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  A  = +oo )  ->  ( A +e C )  e.  RR* )
4645xrleidd 9801 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  A  = +oo )  ->  ( A +e C )  <_  ( A +e C ) )
47 simplr 528 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  A  = +oo )  ->  A  <_  B )
48 pnfge 9789 . . . . . . . . . 10  |-  ( B  e.  RR*  ->  B  <_ +oo )
4932, 48syl 14 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  B  <_ +oo )
5049adantr 276 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  A  = +oo )  ->  B  <_ +oo )
51 simpr 110 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  A  = +oo )  ->  A  = +oo )
5250, 51breqtrrd 4032 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  A  = +oo )  ->  B  <_  A )
5334adantr 276 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  A  = +oo )  ->  ( A  =  B  <->  ( A  <_  B  /\  B  <_  A ) ) )
5447, 52, 53mpbir2and 944 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  A  = +oo )  ->  A  =  B )
5554oveq1d 5890 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  A  = +oo )  ->  ( A +e C )  =  ( B +e C ) )
5646, 55breqtrd 4030 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  A  = +oo )  ->  ( A +e C )  <_  ( B +e C ) )
5756adantlr 477 . . 3  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  e.  RR )  /\  A  = +oo )  ->  ( A +e C )  <_  ( B +e C ) )
58 oveq1 5882 . . . . 5  |-  ( A  = -oo  ->  ( A +e C )  =  ( -oo +e C ) )
59 renepnf 8005 . . . . . . 7  |-  ( C  e.  RR  ->  C  =/= +oo )
60 xaddmnf2 9849 . . . . . . 7  |-  ( ( C  e.  RR*  /\  C  =/= +oo )  ->  ( -oo +e C )  = -oo )
6117, 59, 60syl2anc 411 . . . . . 6  |-  ( C  e.  RR  ->  ( -oo +e C )  = -oo )
6261adantl 277 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  C  e.  RR )  ->  ( -oo +e C )  = -oo )
6358, 62sylan9eqr 2232 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  e.  RR )  /\  A  = -oo )  ->  ( A +e C )  = -oo )
64 xaddcl 9860 . . . . . . 7  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  ( B +e C )  e.  RR* )
6532, 10, 64syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( B +e C )  e.  RR* )
6665ad2antrr 488 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  e.  RR )  /\  A  = -oo )  ->  ( B +e C )  e.  RR* )
67 mnfle 9792 . . . . 5  |-  ( ( B +e C )  e.  RR*  -> -oo 
<_  ( B +e
C ) )
6866, 67syl 14 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  e.  RR )  /\  A  = -oo )  -> -oo  <_  ( B +e C ) )
6963, 68eqbrtrd 4026 . . 3  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  e.  RR )  /\  A  = -oo )  ->  ( A +e C )  <_  ( B +e C ) )
70 elxr 9776 . . . . 5  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
719, 70sylib 122 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
7271adantr 276 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  C  e.  RR )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
7344, 57, 69, 72mpjao3dan 1307 . 2  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  C  e.  RR )  ->  ( A +e C )  <_  ( B +e C ) )
7438adantlr 477 . . 3  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = +oo )  /\  B  = -oo )  ->  ( A +e C )  <_  ( B +e C ) )
7512ad2antrr 488 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = +oo )  /\  B  =/= -oo )  ->  ( A +e C )  e.  RR* )
7675, 14syl 14 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = +oo )  /\  B  =/= -oo )  ->  ( A +e C )  <_ +oo )
77 simplr 528 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = +oo )  /\  B  =/= -oo )  ->  C  = +oo )
7877oveq2d 5891 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = +oo )  /\  B  =/= -oo )  ->  ( B +e C )  =  ( B +e +oo ) )
7932adantr 276 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  C  = +oo )  ->  B  e. 
RR* )
80 xaddpnf1 9846 . . . . . 6  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  ->  ( B +e +oo )  = +oo )
8179, 80sylan 283 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = +oo )  /\  B  =/= -oo )  ->  ( B +e +oo )  = +oo )
8278, 81eqtrd 2210 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = +oo )  /\  B  =/= -oo )  ->  ( B +e C )  = +oo )
8376, 82breqtrrd 4032 . . 3  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = +oo )  /\  B  =/= -oo )  ->  ( A +e C )  <_  ( B +e C ) )
84 xrmnfdc 9843 . . . . . 6  |-  ( B  e.  RR*  -> DECID  B  = -oo )
85 exmiddc 836 . . . . . 6  |-  (DECID  B  = -oo  ->  ( B  = -oo  \/  -.  B  = -oo ) )
8684, 85syl 14 . . . . 5  |-  ( B  e.  RR*  ->  ( B  = -oo  \/  -.  B  = -oo )
)
87 df-ne 2348 . . . . . 6  |-  ( B  =/= -oo  <->  -.  B  = -oo )
8887orbi2i 762 . . . . 5  |-  ( ( B  = -oo  \/  B  =/= -oo )  <->  ( B  = -oo  \/  -.  B  = -oo ) )
8986, 88sylibr 134 . . . 4  |-  ( B  e.  RR*  ->  ( B  = -oo  \/  B  =/= -oo ) )
9079, 89syl 14 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  C  = +oo )  ->  ( B  = -oo  \/  B  =/= -oo ) )
9174, 83, 90mpjaodan 798 . 2  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  C  = +oo )  ->  ( A +e C )  <_  ( B +e C ) )
9256adantlr 477 . . 3  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = -oo )  /\  A  = +oo )  ->  ( A +e C )  <_  ( B +e C ) )
93 simplr 528 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = -oo )  /\  A  =/= +oo )  ->  C  = -oo )
9493oveq2d 5891 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = -oo )  /\  A  =/= +oo )  ->  ( A +e C )  =  ( A +e -oo ) )
959adantr 276 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  C  = -oo )  ->  A  e. 
RR* )
96 xaddmnf1 9848 . . . . . 6  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  ( A +e -oo )  = -oo )
9795, 96sylan 283 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = -oo )  /\  A  =/= +oo )  ->  ( A +e -oo )  = -oo )
9894, 97eqtrd 2210 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = -oo )  /\  A  =/= +oo )  ->  ( A +e C )  = -oo )
9965ad2antrr 488 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = -oo )  /\  A  =/= +oo )  ->  ( B +e C )  e.  RR* )
10099, 67syl 14 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = -oo )  /\  A  =/= +oo )  -> -oo  <_  ( B +e C ) )
10198, 100eqbrtrd 4026 . . 3  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = -oo )  /\  A  =/= +oo )  ->  ( A +e C )  <_  ( B +e C ) )
102 xrpnfdc 9842 . . . . . 6  |-  ( A  e.  RR*  -> DECID  A  = +oo )
103 exmiddc 836 . . . . . 6  |-  (DECID  A  = +oo  ->  ( A  = +oo  \/  -.  A  = +oo ) )
104102, 103syl 14 . . . . 5  |-  ( A  e.  RR*  ->  ( A  = +oo  \/  -.  A  = +oo )
)
105 df-ne 2348 . . . . . 6  |-  ( A  =/= +oo  <->  -.  A  = +oo )
106105orbi2i 762 . . . . 5  |-  ( ( A  = +oo  \/  A  =/= +oo )  <->  ( A  = +oo  \/  -.  A  = +oo ) )
107104, 106sylibr 134 . . . 4  |-  ( A  e.  RR*  ->  ( A  = +oo  \/  A  =/= +oo ) )
10895, 107syl 14 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  C  = -oo )  ->  ( A  = +oo  \/  A  =/= +oo ) )
10992, 101, 108mpjaodan 798 . 2  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  C  = -oo )  ->  ( A +e C )  <_  ( B +e C ) )
110 elxr 9776 . . 3  |-  ( C  e.  RR*  <->  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )
11110, 110sylib 122 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )
11273, 91, 109, 111mpjao3dan 1307 1  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( A +e C )  <_  ( B +e C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708  DECID wdc 834    \/ w3o 977    /\ w3a 978    = wceq 1353    e. wcel 2148    =/= wne 2347   class class class wbr 4004  (class class class)co 5875   RRcr 7810    + caddc 7814   +oocpnf 7989   -oocmnf 7990   RR*cxr 7991    <_ cle 7993   +ecxad 9770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-i2m1 7916  ax-0id 7919  ax-rnegex 7920  ax-pre-ltirr 7923  ax-pre-apti 7926  ax-pre-ltadd 7927
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-xadd 9773
This theorem is referenced by:  xleadd2a  9874  xleadd1  9875  xaddge0  9878  xle2add  9879  xblss2ps  13907  xblss2  13908
  Copyright terms: Public domain W3C validator