Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xleadd1a | Unicode version |
Description: Extended real version of leadd1 8336; note that the converse implication is not true, unlike the real version (for example but ). (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xleadd1a |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplrr 531 | . . . . . . 7 | |
2 | simpr 109 | . . . . . . 7 | |
3 | simplrl 530 | . . . . . . 7 | |
4 | simpllr 529 | . . . . . . 7 | |
5 | 1, 2, 3, 4 | leadd1dd 8465 | . . . . . 6 |
6 | 1, 3 | rexaddd 9798 | . . . . . 6 |
7 | 2, 3 | rexaddd 9798 | . . . . . 6 |
8 | 5, 6, 7 | 3brtr4d 4019 | . . . . 5 |
9 | simpl1 995 | . . . . . . . . 9 | |
10 | simpl3 997 | . . . . . . . . 9 | |
11 | xaddcl 9804 | . . . . . . . . 9 | |
12 | 9, 10, 11 | syl2anc 409 | . . . . . . . 8 |
13 | 12 | ad2antrr 485 | . . . . . . 7 |
14 | pnfge 9733 | . . . . . . 7 | |
15 | 13, 14 | syl 14 | . . . . . 6 |
16 | oveq1 5857 | . . . . . . 7 | |
17 | rexr 7952 | . . . . . . . . 9 | |
18 | renemnf 7955 | . . . . . . . . 9 | |
19 | xaddpnf2 9791 | . . . . . . . . 9 | |
20 | 17, 18, 19 | syl2anc 409 | . . . . . . . 8 |
21 | 20 | ad2antrl 487 | . . . . . . 7 |
22 | 16, 21 | sylan9eqr 2225 | . . . . . 6 |
23 | 15, 22 | breqtrrd 4015 | . . . . 5 |
24 | 12 | adantr 274 | . . . . . . . 8 |
25 | 24 | xrleidd 9745 | . . . . . . 7 |
26 | simplr 525 | . . . . . . . . 9 | |
27 | simpr 109 | . . . . . . . . . 10 | |
28 | 9 | adantr 274 | . . . . . . . . . . 11 |
29 | mnfle 9736 | . . . . . . . . . . 11 | |
30 | 28, 29 | syl 14 | . . . . . . . . . 10 |
31 | 27, 30 | eqbrtrd 4009 | . . . . . . . . 9 |
32 | simpl2 996 | . . . . . . . . . . 11 | |
33 | xrletri3 9748 | . . . . . . . . . . 11 | |
34 | 9, 32, 33 | syl2anc 409 | . . . . . . . . . 10 |
35 | 34 | adantr 274 | . . . . . . . . 9 |
36 | 26, 31, 35 | mpbir2and 939 | . . . . . . . 8 |
37 | 36 | oveq1d 5865 | . . . . . . 7 |
38 | 25, 37 | breqtrd 4013 | . . . . . 6 |
39 | 38 | adantlr 474 | . . . . 5 |
40 | elxr 9720 | . . . . . . 7 | |
41 | 32, 40 | sylib 121 | . . . . . 6 |
42 | 41 | adantr 274 | . . . . 5 |
43 | 8, 23, 39, 42 | mpjao3dan 1302 | . . . 4 |
44 | 43 | anassrs 398 | . . 3 |
45 | 12 | adantr 274 | . . . . . 6 |
46 | 45 | xrleidd 9745 | . . . . 5 |
47 | simplr 525 | . . . . . . 7 | |
48 | pnfge 9733 | . . . . . . . . . 10 | |
49 | 32, 48 | syl 14 | . . . . . . . . 9 |
50 | 49 | adantr 274 | . . . . . . . 8 |
51 | simpr 109 | . . . . . . . 8 | |
52 | 50, 51 | breqtrrd 4015 | . . . . . . 7 |
53 | 34 | adantr 274 | . . . . . . 7 |
54 | 47, 52, 53 | mpbir2and 939 | . . . . . 6 |
55 | 54 | oveq1d 5865 | . . . . 5 |
56 | 46, 55 | breqtrd 4013 | . . . 4 |
57 | 56 | adantlr 474 | . . 3 |
58 | oveq1 5857 | . . . . 5 | |
59 | renepnf 7954 | . . . . . . 7 | |
60 | xaddmnf2 9793 | . . . . . . 7 | |
61 | 17, 59, 60 | syl2anc 409 | . . . . . 6 |
62 | 61 | adantl 275 | . . . . 5 |
63 | 58, 62 | sylan9eqr 2225 | . . . 4 |
64 | xaddcl 9804 | . . . . . . 7 | |
65 | 32, 10, 64 | syl2anc 409 | . . . . . 6 |
66 | 65 | ad2antrr 485 | . . . . 5 |
67 | mnfle 9736 | . . . . 5 | |
68 | 66, 67 | syl 14 | . . . 4 |
69 | 63, 68 | eqbrtrd 4009 | . . 3 |
70 | elxr 9720 | . . . . 5 | |
71 | 9, 70 | sylib 121 | . . . 4 |
72 | 71 | adantr 274 | . . 3 |
73 | 44, 57, 69, 72 | mpjao3dan 1302 | . 2 |
74 | 38 | adantlr 474 | . . 3 |
75 | 12 | ad2antrr 485 | . . . . 5 |
76 | 75, 14 | syl 14 | . . . 4 |
77 | simplr 525 | . . . . . 6 | |
78 | 77 | oveq2d 5866 | . . . . 5 |
79 | 32 | adantr 274 | . . . . . 6 |
80 | xaddpnf1 9790 | . . . . . 6 | |
81 | 79, 80 | sylan 281 | . . . . 5 |
82 | 78, 81 | eqtrd 2203 | . . . 4 |
83 | 76, 82 | breqtrrd 4015 | . . 3 |
84 | xrmnfdc 9787 | . . . . . 6 DECID | |
85 | exmiddc 831 | . . . . . 6 DECID | |
86 | 84, 85 | syl 14 | . . . . 5 |
87 | df-ne 2341 | . . . . . 6 | |
88 | 87 | orbi2i 757 | . . . . 5 |
89 | 86, 88 | sylibr 133 | . . . 4 |
90 | 79, 89 | syl 14 | . . 3 |
91 | 74, 83, 90 | mpjaodan 793 | . 2 |
92 | 56 | adantlr 474 | . . 3 |
93 | simplr 525 | . . . . . 6 | |
94 | 93 | oveq2d 5866 | . . . . 5 |
95 | 9 | adantr 274 | . . . . . 6 |
96 | xaddmnf1 9792 | . . . . . 6 | |
97 | 95, 96 | sylan 281 | . . . . 5 |
98 | 94, 97 | eqtrd 2203 | . . . 4 |
99 | 65 | ad2antrr 485 | . . . . 5 |
100 | 99, 67 | syl 14 | . . . 4 |
101 | 98, 100 | eqbrtrd 4009 | . . 3 |
102 | xrpnfdc 9786 | . . . . . 6 DECID | |
103 | exmiddc 831 | . . . . . 6 DECID | |
104 | 102, 103 | syl 14 | . . . . 5 |
105 | df-ne 2341 | . . . . . 6 | |
106 | 105 | orbi2i 757 | . . . . 5 |
107 | 104, 106 | sylibr 133 | . . . 4 |
108 | 95, 107 | syl 14 | . . 3 |
109 | 92, 101, 108 | mpjaodan 793 | . 2 |
110 | elxr 9720 | . . 3 | |
111 | 10, 110 | sylib 121 | . 2 |
112 | 73, 91, 109, 111 | mpjao3dan 1302 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 DECID wdc 829 w3o 972 w3a 973 wceq 1348 wcel 2141 wne 2340 class class class wbr 3987 (class class class)co 5850 cr 7760 caddc 7764 cpnf 7938 cmnf 7939 cxr 7940 cle 7942 cxad 9714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-addcom 7861 ax-addass 7863 ax-i2m1 7866 ax-0id 7869 ax-rnegex 7870 ax-pre-ltirr 7873 ax-pre-apti 7876 ax-pre-ltadd 7877 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-fv 5204 df-ov 5853 df-oprab 5854 df-mpo 5855 df-1st 6116 df-2nd 6117 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-xadd 9717 |
This theorem is referenced by: xleadd2a 9818 xleadd1 9819 xaddge0 9822 xle2add 9823 xblss2ps 13119 xblss2 13120 |
Copyright terms: Public domain | W3C validator |