Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xleadd1a | Unicode version |
Description: Extended real version of leadd1 8328; note that the converse implication is not true, unlike the real version (for example but ). (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xleadd1a |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplrr 526 | . . . . . . 7 | |
2 | simpr 109 | . . . . . . 7 | |
3 | simplrl 525 | . . . . . . 7 | |
4 | simpllr 524 | . . . . . . 7 | |
5 | 1, 2, 3, 4 | leadd1dd 8457 | . . . . . 6 |
6 | 1, 3 | rexaddd 9790 | . . . . . 6 |
7 | 2, 3 | rexaddd 9790 | . . . . . 6 |
8 | 5, 6, 7 | 3brtr4d 4014 | . . . . 5 |
9 | simpl1 990 | . . . . . . . . 9 | |
10 | simpl3 992 | . . . . . . . . 9 | |
11 | xaddcl 9796 | . . . . . . . . 9 | |
12 | 9, 10, 11 | syl2anc 409 | . . . . . . . 8 |
13 | 12 | ad2antrr 480 | . . . . . . 7 |
14 | pnfge 9725 | . . . . . . 7 | |
15 | 13, 14 | syl 14 | . . . . . 6 |
16 | oveq1 5849 | . . . . . . 7 | |
17 | rexr 7944 | . . . . . . . . 9 | |
18 | renemnf 7947 | . . . . . . . . 9 | |
19 | xaddpnf2 9783 | . . . . . . . . 9 | |
20 | 17, 18, 19 | syl2anc 409 | . . . . . . . 8 |
21 | 20 | ad2antrl 482 | . . . . . . 7 |
22 | 16, 21 | sylan9eqr 2221 | . . . . . 6 |
23 | 15, 22 | breqtrrd 4010 | . . . . 5 |
24 | 12 | adantr 274 | . . . . . . . 8 |
25 | 24 | xrleidd 9737 | . . . . . . 7 |
26 | simplr 520 | . . . . . . . . 9 | |
27 | simpr 109 | . . . . . . . . . 10 | |
28 | 9 | adantr 274 | . . . . . . . . . . 11 |
29 | mnfle 9728 | . . . . . . . . . . 11 | |
30 | 28, 29 | syl 14 | . . . . . . . . . 10 |
31 | 27, 30 | eqbrtrd 4004 | . . . . . . . . 9 |
32 | simpl2 991 | . . . . . . . . . . 11 | |
33 | xrletri3 9740 | . . . . . . . . . . 11 | |
34 | 9, 32, 33 | syl2anc 409 | . . . . . . . . . 10 |
35 | 34 | adantr 274 | . . . . . . . . 9 |
36 | 26, 31, 35 | mpbir2and 934 | . . . . . . . 8 |
37 | 36 | oveq1d 5857 | . . . . . . 7 |
38 | 25, 37 | breqtrd 4008 | . . . . . 6 |
39 | 38 | adantlr 469 | . . . . 5 |
40 | elxr 9712 | . . . . . . 7 | |
41 | 32, 40 | sylib 121 | . . . . . 6 |
42 | 41 | adantr 274 | . . . . 5 |
43 | 8, 23, 39, 42 | mpjao3dan 1297 | . . . 4 |
44 | 43 | anassrs 398 | . . 3 |
45 | 12 | adantr 274 | . . . . . 6 |
46 | 45 | xrleidd 9737 | . . . . 5 |
47 | simplr 520 | . . . . . . 7 | |
48 | pnfge 9725 | . . . . . . . . . 10 | |
49 | 32, 48 | syl 14 | . . . . . . . . 9 |
50 | 49 | adantr 274 | . . . . . . . 8 |
51 | simpr 109 | . . . . . . . 8 | |
52 | 50, 51 | breqtrrd 4010 | . . . . . . 7 |
53 | 34 | adantr 274 | . . . . . . 7 |
54 | 47, 52, 53 | mpbir2and 934 | . . . . . 6 |
55 | 54 | oveq1d 5857 | . . . . 5 |
56 | 46, 55 | breqtrd 4008 | . . . 4 |
57 | 56 | adantlr 469 | . . 3 |
58 | oveq1 5849 | . . . . 5 | |
59 | renepnf 7946 | . . . . . . 7 | |
60 | xaddmnf2 9785 | . . . . . . 7 | |
61 | 17, 59, 60 | syl2anc 409 | . . . . . 6 |
62 | 61 | adantl 275 | . . . . 5 |
63 | 58, 62 | sylan9eqr 2221 | . . . 4 |
64 | xaddcl 9796 | . . . . . . 7 | |
65 | 32, 10, 64 | syl2anc 409 | . . . . . 6 |
66 | 65 | ad2antrr 480 | . . . . 5 |
67 | mnfle 9728 | . . . . 5 | |
68 | 66, 67 | syl 14 | . . . 4 |
69 | 63, 68 | eqbrtrd 4004 | . . 3 |
70 | elxr 9712 | . . . . 5 | |
71 | 9, 70 | sylib 121 | . . . 4 |
72 | 71 | adantr 274 | . . 3 |
73 | 44, 57, 69, 72 | mpjao3dan 1297 | . 2 |
74 | 38 | adantlr 469 | . . 3 |
75 | 12 | ad2antrr 480 | . . . . 5 |
76 | 75, 14 | syl 14 | . . . 4 |
77 | simplr 520 | . . . . . 6 | |
78 | 77 | oveq2d 5858 | . . . . 5 |
79 | 32 | adantr 274 | . . . . . 6 |
80 | xaddpnf1 9782 | . . . . . 6 | |
81 | 79, 80 | sylan 281 | . . . . 5 |
82 | 78, 81 | eqtrd 2198 | . . . 4 |
83 | 76, 82 | breqtrrd 4010 | . . 3 |
84 | xrmnfdc 9779 | . . . . . 6 DECID | |
85 | exmiddc 826 | . . . . . 6 DECID | |
86 | 84, 85 | syl 14 | . . . . 5 |
87 | df-ne 2337 | . . . . . 6 | |
88 | 87 | orbi2i 752 | . . . . 5 |
89 | 86, 88 | sylibr 133 | . . . 4 |
90 | 79, 89 | syl 14 | . . 3 |
91 | 74, 83, 90 | mpjaodan 788 | . 2 |
92 | 56 | adantlr 469 | . . 3 |
93 | simplr 520 | . . . . . 6 | |
94 | 93 | oveq2d 5858 | . . . . 5 |
95 | 9 | adantr 274 | . . . . . 6 |
96 | xaddmnf1 9784 | . . . . . 6 | |
97 | 95, 96 | sylan 281 | . . . . 5 |
98 | 94, 97 | eqtrd 2198 | . . . 4 |
99 | 65 | ad2antrr 480 | . . . . 5 |
100 | 99, 67 | syl 14 | . . . 4 |
101 | 98, 100 | eqbrtrd 4004 | . . 3 |
102 | xrpnfdc 9778 | . . . . . 6 DECID | |
103 | exmiddc 826 | . . . . . 6 DECID | |
104 | 102, 103 | syl 14 | . . . . 5 |
105 | df-ne 2337 | . . . . . 6 | |
106 | 105 | orbi2i 752 | . . . . 5 |
107 | 104, 106 | sylibr 133 | . . . 4 |
108 | 95, 107 | syl 14 | . . 3 |
109 | 92, 101, 108 | mpjaodan 788 | . 2 |
110 | elxr 9712 | . . 3 | |
111 | 10, 110 | sylib 121 | . 2 |
112 | 73, 91, 109, 111 | mpjao3dan 1297 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 DECID wdc 824 w3o 967 w3a 968 wceq 1343 wcel 2136 wne 2336 class class class wbr 3982 (class class class)co 5842 cr 7752 caddc 7756 cpnf 7930 cmnf 7931 cxr 7932 cle 7934 cxad 9706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-i2m1 7858 ax-0id 7861 ax-rnegex 7862 ax-pre-ltirr 7865 ax-pre-apti 7868 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-xadd 9709 |
This theorem is referenced by: xleadd2a 9810 xleadd1 9811 xaddge0 9814 xle2add 9815 xblss2ps 13044 xblss2 13045 |
Copyright terms: Public domain | W3C validator |