ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xleadd1a Unicode version

Theorem xleadd1a 9942
Description: Extended real version of leadd1 8451; note that the converse implication is not true, unlike the real version (for example  0  <  1 but  ( 1 +e +oo )  <_  ( 0 +e +oo )). (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xleadd1a  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( A +e C )  <_  ( B +e C ) )

Proof of Theorem xleadd1a
StepHypRef Expression
1 simplrr 536 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  e.  RR )  ->  A  e.  RR )
2 simpr 110 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  e.  RR )  ->  B  e.  RR )
3 simplrl 535 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  e.  RR )  ->  C  e.  RR )
4 simpllr 534 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  e.  RR )  ->  A  <_  B )
51, 2, 3, 4leadd1dd 8580 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  e.  RR )  ->  ( A  +  C
)  <_  ( B  +  C ) )
61, 3rexaddd 9923 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  e.  RR )  ->  ( A +e
C )  =  ( A  +  C ) )
72, 3rexaddd 9923 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  e.  RR )  ->  ( B +e
C )  =  ( B  +  C ) )
85, 6, 73brtr4d 4062 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  e.  RR )  ->  ( A +e
C )  <_  ( B +e C ) )
9 simpl1 1002 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  A  e.  RR* )
10 simpl3 1004 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  C  e.  RR* )
11 xaddcl 9929 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  C  e.  RR* )  ->  ( A +e C )  e.  RR* )
129, 10, 11syl2anc 411 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( A +e C )  e.  RR* )
1312ad2antrr 488 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  = +oo )  ->  ( A +e
C )  e.  RR* )
14 pnfge 9858 . . . . . . 7  |-  ( ( A +e C )  e.  RR*  ->  ( A +e C )  <_ +oo )
1513, 14syl 14 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  = +oo )  ->  ( A +e
C )  <_ +oo )
16 oveq1 5926 . . . . . . 7  |-  ( B  = +oo  ->  ( B +e C )  =  ( +oo +e C ) )
17 rexr 8067 . . . . . . . . 9  |-  ( C  e.  RR  ->  C  e.  RR* )
18 renemnf 8070 . . . . . . . . 9  |-  ( C  e.  RR  ->  C  =/= -oo )
19 xaddpnf2 9916 . . . . . . . . 9  |-  ( ( C  e.  RR*  /\  C  =/= -oo )  ->  ( +oo +e C )  = +oo )
2017, 18, 19syl2anc 411 . . . . . . . 8  |-  ( C  e.  RR  ->  ( +oo +e C )  = +oo )
2120ad2antrl 490 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  ( C  e.  RR  /\  A  e.  RR ) )  -> 
( +oo +e C )  = +oo )
2216, 21sylan9eqr 2248 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  = +oo )  ->  ( B +e
C )  = +oo )
2315, 22breqtrrd 4058 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  = +oo )  ->  ( A +e
C )  <_  ( B +e C ) )
2412adantr 276 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  B  = -oo )  ->  ( A +e C )  e.  RR* )
2524xrleidd 9870 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  B  = -oo )  ->  ( A +e C )  <_  ( A +e C ) )
26 simplr 528 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  B  = -oo )  ->  A  <_  B )
27 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  B  = -oo )  ->  B  = -oo )
289adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  B  = -oo )  ->  A  e. 
RR* )
29 mnfle 9861 . . . . . . . . . . 11  |-  ( A  e.  RR*  -> -oo  <_  A )
3028, 29syl 14 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  B  = -oo )  -> -oo  <_  A )
3127, 30eqbrtrd 4052 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  B  = -oo )  ->  B  <_  A )
32 simpl2 1003 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  B  e.  RR* )
33 xrletri3 9873 . . . . . . . . . . 11  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  =  B  <->  ( A  <_  B  /\  B  <_  A ) ) )
349, 32, 33syl2anc 411 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( A  =  B  <->  ( A  <_  B  /\  B  <_  A ) ) )
3534adantr 276 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  B  = -oo )  ->  ( A  =  B  <->  ( A  <_  B  /\  B  <_  A ) ) )
3626, 31, 35mpbir2and 946 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  B  = -oo )  ->  A  =  B )
3736oveq1d 5934 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  B  = -oo )  ->  ( A +e C )  =  ( B +e C ) )
3825, 37breqtrd 4056 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  B  = -oo )  ->  ( A +e C )  <_  ( B +e C ) )
3938adantlr 477 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  = -oo )  ->  ( A +e
C )  <_  ( B +e C ) )
40 elxr 9845 . . . . . . 7  |-  ( B  e.  RR*  <->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
4132, 40sylib 122 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
4241adantr 276 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  ( C  e.  RR  /\  A  e.  RR ) )  -> 
( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
438, 23, 39, 42mpjao3dan 1318 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  ( C  e.  RR  /\  A  e.  RR ) )  -> 
( A +e
C )  <_  ( B +e C ) )
4443anassrs 400 . . 3  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  e.  RR )  /\  A  e.  RR )  ->  ( A +e C )  <_  ( B +e C ) )
4512adantr 276 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  A  = +oo )  ->  ( A +e C )  e.  RR* )
4645xrleidd 9870 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  A  = +oo )  ->  ( A +e C )  <_  ( A +e C ) )
47 simplr 528 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  A  = +oo )  ->  A  <_  B )
48 pnfge 9858 . . . . . . . . . 10  |-  ( B  e.  RR*  ->  B  <_ +oo )
4932, 48syl 14 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  B  <_ +oo )
5049adantr 276 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  A  = +oo )  ->  B  <_ +oo )
51 simpr 110 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  A  = +oo )  ->  A  = +oo )
5250, 51breqtrrd 4058 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  A  = +oo )  ->  B  <_  A )
5334adantr 276 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  A  = +oo )  ->  ( A  =  B  <->  ( A  <_  B  /\  B  <_  A ) ) )
5447, 52, 53mpbir2and 946 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  A  = +oo )  ->  A  =  B )
5554oveq1d 5934 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  A  = +oo )  ->  ( A +e C )  =  ( B +e C ) )
5646, 55breqtrd 4056 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  A  = +oo )  ->  ( A +e C )  <_  ( B +e C ) )
5756adantlr 477 . . 3  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  e.  RR )  /\  A  = +oo )  ->  ( A +e C )  <_  ( B +e C ) )
58 oveq1 5926 . . . . 5  |-  ( A  = -oo  ->  ( A +e C )  =  ( -oo +e C ) )
59 renepnf 8069 . . . . . . 7  |-  ( C  e.  RR  ->  C  =/= +oo )
60 xaddmnf2 9918 . . . . . . 7  |-  ( ( C  e.  RR*  /\  C  =/= +oo )  ->  ( -oo +e C )  = -oo )
6117, 59, 60syl2anc 411 . . . . . 6  |-  ( C  e.  RR  ->  ( -oo +e C )  = -oo )
6261adantl 277 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  C  e.  RR )  ->  ( -oo +e C )  = -oo )
6358, 62sylan9eqr 2248 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  e.  RR )  /\  A  = -oo )  ->  ( A +e C )  = -oo )
64 xaddcl 9929 . . . . . . 7  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  ( B +e C )  e.  RR* )
6532, 10, 64syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( B +e C )  e.  RR* )
6665ad2antrr 488 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  e.  RR )  /\  A  = -oo )  ->  ( B +e C )  e.  RR* )
67 mnfle 9861 . . . . 5  |-  ( ( B +e C )  e.  RR*  -> -oo 
<_  ( B +e
C ) )
6866, 67syl 14 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  e.  RR )  /\  A  = -oo )  -> -oo  <_  ( B +e C ) )
6963, 68eqbrtrd 4052 . . 3  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  e.  RR )  /\  A  = -oo )  ->  ( A +e C )  <_  ( B +e C ) )
70 elxr 9845 . . . . 5  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
719, 70sylib 122 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
7271adantr 276 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  C  e.  RR )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
7344, 57, 69, 72mpjao3dan 1318 . 2  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  C  e.  RR )  ->  ( A +e C )  <_  ( B +e C ) )
7438adantlr 477 . . 3  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = +oo )  /\  B  = -oo )  ->  ( A +e C )  <_  ( B +e C ) )
7512ad2antrr 488 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = +oo )  /\  B  =/= -oo )  ->  ( A +e C )  e.  RR* )
7675, 14syl 14 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = +oo )  /\  B  =/= -oo )  ->  ( A +e C )  <_ +oo )
77 simplr 528 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = +oo )  /\  B  =/= -oo )  ->  C  = +oo )
7877oveq2d 5935 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = +oo )  /\  B  =/= -oo )  ->  ( B +e C )  =  ( B +e +oo ) )
7932adantr 276 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  C  = +oo )  ->  B  e. 
RR* )
80 xaddpnf1 9915 . . . . . 6  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  ->  ( B +e +oo )  = +oo )
8179, 80sylan 283 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = +oo )  /\  B  =/= -oo )  ->  ( B +e +oo )  = +oo )
8278, 81eqtrd 2226 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = +oo )  /\  B  =/= -oo )  ->  ( B +e C )  = +oo )
8376, 82breqtrrd 4058 . . 3  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = +oo )  /\  B  =/= -oo )  ->  ( A +e C )  <_  ( B +e C ) )
84 xrmnfdc 9912 . . . . . 6  |-  ( B  e.  RR*  -> DECID  B  = -oo )
85 exmiddc 837 . . . . . 6  |-  (DECID  B  = -oo  ->  ( B  = -oo  \/  -.  B  = -oo ) )
8684, 85syl 14 . . . . 5  |-  ( B  e.  RR*  ->  ( B  = -oo  \/  -.  B  = -oo )
)
87 df-ne 2365 . . . . . 6  |-  ( B  =/= -oo  <->  -.  B  = -oo )
8887orbi2i 763 . . . . 5  |-  ( ( B  = -oo  \/  B  =/= -oo )  <->  ( B  = -oo  \/  -.  B  = -oo ) )
8986, 88sylibr 134 . . . 4  |-  ( B  e.  RR*  ->  ( B  = -oo  \/  B  =/= -oo ) )
9079, 89syl 14 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  C  = +oo )  ->  ( B  = -oo  \/  B  =/= -oo ) )
9174, 83, 90mpjaodan 799 . 2  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  C  = +oo )  ->  ( A +e C )  <_  ( B +e C ) )
9256adantlr 477 . . 3  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = -oo )  /\  A  = +oo )  ->  ( A +e C )  <_  ( B +e C ) )
93 simplr 528 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = -oo )  /\  A  =/= +oo )  ->  C  = -oo )
9493oveq2d 5935 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = -oo )  /\  A  =/= +oo )  ->  ( A +e C )  =  ( A +e -oo ) )
959adantr 276 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  C  = -oo )  ->  A  e. 
RR* )
96 xaddmnf1 9917 . . . . . 6  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  ( A +e -oo )  = -oo )
9795, 96sylan 283 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = -oo )  /\  A  =/= +oo )  ->  ( A +e -oo )  = -oo )
9894, 97eqtrd 2226 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = -oo )  /\  A  =/= +oo )  ->  ( A +e C )  = -oo )
9965ad2antrr 488 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = -oo )  /\  A  =/= +oo )  ->  ( B +e C )  e.  RR* )
10099, 67syl 14 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = -oo )  /\  A  =/= +oo )  -> -oo  <_  ( B +e C ) )
10198, 100eqbrtrd 4052 . . 3  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = -oo )  /\  A  =/= +oo )  ->  ( A +e C )  <_  ( B +e C ) )
102 xrpnfdc 9911 . . . . . 6  |-  ( A  e.  RR*  -> DECID  A  = +oo )
103 exmiddc 837 . . . . . 6  |-  (DECID  A  = +oo  ->  ( A  = +oo  \/  -.  A  = +oo ) )
104102, 103syl 14 . . . . 5  |-  ( A  e.  RR*  ->  ( A  = +oo  \/  -.  A  = +oo )
)
105 df-ne 2365 . . . . . 6  |-  ( A  =/= +oo  <->  -.  A  = +oo )
106105orbi2i 763 . . . . 5  |-  ( ( A  = +oo  \/  A  =/= +oo )  <->  ( A  = +oo  \/  -.  A  = +oo ) )
107104, 106sylibr 134 . . . 4  |-  ( A  e.  RR*  ->  ( A  = +oo  \/  A  =/= +oo ) )
10895, 107syl 14 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  C  = -oo )  ->  ( A  = +oo  \/  A  =/= +oo ) )
10992, 101, 108mpjaodan 799 . 2  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  C  = -oo )  ->  ( A +e C )  <_  ( B +e C ) )
110 elxr 9845 . . 3  |-  ( C  e.  RR*  <->  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )
11110, 110sylib 122 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )
11273, 91, 109, 111mpjao3dan 1318 1  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( A +e C )  <_  ( B +e C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    \/ w3o 979    /\ w3a 980    = wceq 1364    e. wcel 2164    =/= wne 2364   class class class wbr 4030  (class class class)co 5919   RRcr 7873    + caddc 7877   +oocpnf 8053   -oocmnf 8054   RR*cxr 8055    <_ cle 8057   +ecxad 9839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-apti 7989  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-xadd 9842
This theorem is referenced by:  xleadd2a  9943  xleadd1  9944  xaddge0  9947  xle2add  9948  xblss2ps  14583  xblss2  14584
  Copyright terms: Public domain W3C validator