| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xleadd1a | Unicode version | ||
| Description: Extended real version of
leadd1 8503; note that the converse implication is
not true, unlike the real version (for example |
| Ref | Expression |
|---|---|
| xleadd1a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplrr 536 |
. . . . . . 7
| |
| 2 | simpr 110 |
. . . . . . 7
| |
| 3 | simplrl 535 |
. . . . . . 7
| |
| 4 | simpllr 534 |
. . . . . . 7
| |
| 5 | 1, 2, 3, 4 | leadd1dd 8632 |
. . . . . 6
|
| 6 | 1, 3 | rexaddd 9976 |
. . . . . 6
|
| 7 | 2, 3 | rexaddd 9976 |
. . . . . 6
|
| 8 | 5, 6, 7 | 3brtr4d 4076 |
. . . . 5
|
| 9 | simpl1 1003 |
. . . . . . . . 9
| |
| 10 | simpl3 1005 |
. . . . . . . . 9
| |
| 11 | xaddcl 9982 |
. . . . . . . . 9
| |
| 12 | 9, 10, 11 | syl2anc 411 |
. . . . . . . 8
|
| 13 | 12 | ad2antrr 488 |
. . . . . . 7
|
| 14 | pnfge 9911 |
. . . . . . 7
| |
| 15 | 13, 14 | syl 14 |
. . . . . 6
|
| 16 | oveq1 5951 |
. . . . . . 7
| |
| 17 | rexr 8118 |
. . . . . . . . 9
| |
| 18 | renemnf 8121 |
. . . . . . . . 9
| |
| 19 | xaddpnf2 9969 |
. . . . . . . . 9
| |
| 20 | 17, 18, 19 | syl2anc 411 |
. . . . . . . 8
|
| 21 | 20 | ad2antrl 490 |
. . . . . . 7
|
| 22 | 16, 21 | sylan9eqr 2260 |
. . . . . 6
|
| 23 | 15, 22 | breqtrrd 4072 |
. . . . 5
|
| 24 | 12 | adantr 276 |
. . . . . . . 8
|
| 25 | 24 | xrleidd 9923 |
. . . . . . 7
|
| 26 | simplr 528 |
. . . . . . . . 9
| |
| 27 | simpr 110 |
. . . . . . . . . 10
| |
| 28 | 9 | adantr 276 |
. . . . . . . . . . 11
|
| 29 | mnfle 9914 |
. . . . . . . . . . 11
| |
| 30 | 28, 29 | syl 14 |
. . . . . . . . . 10
|
| 31 | 27, 30 | eqbrtrd 4066 |
. . . . . . . . 9
|
| 32 | simpl2 1004 |
. . . . . . . . . . 11
| |
| 33 | xrletri3 9926 |
. . . . . . . . . . 11
| |
| 34 | 9, 32, 33 | syl2anc 411 |
. . . . . . . . . 10
|
| 35 | 34 | adantr 276 |
. . . . . . . . 9
|
| 36 | 26, 31, 35 | mpbir2and 947 |
. . . . . . . 8
|
| 37 | 36 | oveq1d 5959 |
. . . . . . 7
|
| 38 | 25, 37 | breqtrd 4070 |
. . . . . 6
|
| 39 | 38 | adantlr 477 |
. . . . 5
|
| 40 | elxr 9898 |
. . . . . . 7
| |
| 41 | 32, 40 | sylib 122 |
. . . . . 6
|
| 42 | 41 | adantr 276 |
. . . . 5
|
| 43 | 8, 23, 39, 42 | mpjao3dan 1320 |
. . . 4
|
| 44 | 43 | anassrs 400 |
. . 3
|
| 45 | 12 | adantr 276 |
. . . . . 6
|
| 46 | 45 | xrleidd 9923 |
. . . . 5
|
| 47 | simplr 528 |
. . . . . . 7
| |
| 48 | pnfge 9911 |
. . . . . . . . . 10
| |
| 49 | 32, 48 | syl 14 |
. . . . . . . . 9
|
| 50 | 49 | adantr 276 |
. . . . . . . 8
|
| 51 | simpr 110 |
. . . . . . . 8
| |
| 52 | 50, 51 | breqtrrd 4072 |
. . . . . . 7
|
| 53 | 34 | adantr 276 |
. . . . . . 7
|
| 54 | 47, 52, 53 | mpbir2and 947 |
. . . . . 6
|
| 55 | 54 | oveq1d 5959 |
. . . . 5
|
| 56 | 46, 55 | breqtrd 4070 |
. . . 4
|
| 57 | 56 | adantlr 477 |
. . 3
|
| 58 | oveq1 5951 |
. . . . 5
| |
| 59 | renepnf 8120 |
. . . . . . 7
| |
| 60 | xaddmnf2 9971 |
. . . . . . 7
| |
| 61 | 17, 59, 60 | syl2anc 411 |
. . . . . 6
|
| 62 | 61 | adantl 277 |
. . . . 5
|
| 63 | 58, 62 | sylan9eqr 2260 |
. . . 4
|
| 64 | xaddcl 9982 |
. . . . . . 7
| |
| 65 | 32, 10, 64 | syl2anc 411 |
. . . . . 6
|
| 66 | 65 | ad2antrr 488 |
. . . . 5
|
| 67 | mnfle 9914 |
. . . . 5
| |
| 68 | 66, 67 | syl 14 |
. . . 4
|
| 69 | 63, 68 | eqbrtrd 4066 |
. . 3
|
| 70 | elxr 9898 |
. . . . 5
| |
| 71 | 9, 70 | sylib 122 |
. . . 4
|
| 72 | 71 | adantr 276 |
. . 3
|
| 73 | 44, 57, 69, 72 | mpjao3dan 1320 |
. 2
|
| 74 | 38 | adantlr 477 |
. . 3
|
| 75 | 12 | ad2antrr 488 |
. . . . 5
|
| 76 | 75, 14 | syl 14 |
. . . 4
|
| 77 | simplr 528 |
. . . . . 6
| |
| 78 | 77 | oveq2d 5960 |
. . . . 5
|
| 79 | 32 | adantr 276 |
. . . . . 6
|
| 80 | xaddpnf1 9968 |
. . . . . 6
| |
| 81 | 79, 80 | sylan 283 |
. . . . 5
|
| 82 | 78, 81 | eqtrd 2238 |
. . . 4
|
| 83 | 76, 82 | breqtrrd 4072 |
. . 3
|
| 84 | xrmnfdc 9965 |
. . . . . 6
| |
| 85 | exmiddc 838 |
. . . . . 6
| |
| 86 | 84, 85 | syl 14 |
. . . . 5
|
| 87 | df-ne 2377 |
. . . . . 6
| |
| 88 | 87 | orbi2i 764 |
. . . . 5
|
| 89 | 86, 88 | sylibr 134 |
. . . 4
|
| 90 | 79, 89 | syl 14 |
. . 3
|
| 91 | 74, 83, 90 | mpjaodan 800 |
. 2
|
| 92 | 56 | adantlr 477 |
. . 3
|
| 93 | simplr 528 |
. . . . . 6
| |
| 94 | 93 | oveq2d 5960 |
. . . . 5
|
| 95 | 9 | adantr 276 |
. . . . . 6
|
| 96 | xaddmnf1 9970 |
. . . . . 6
| |
| 97 | 95, 96 | sylan 283 |
. . . . 5
|
| 98 | 94, 97 | eqtrd 2238 |
. . . 4
|
| 99 | 65 | ad2antrr 488 |
. . . . 5
|
| 100 | 99, 67 | syl 14 |
. . . 4
|
| 101 | 98, 100 | eqbrtrd 4066 |
. . 3
|
| 102 | xrpnfdc 9964 |
. . . . . 6
| |
| 103 | exmiddc 838 |
. . . . . 6
| |
| 104 | 102, 103 | syl 14 |
. . . . 5
|
| 105 | df-ne 2377 |
. . . . . 6
| |
| 106 | 105 | orbi2i 764 |
. . . . 5
|
| 107 | 104, 106 | sylibr 134 |
. . . 4
|
| 108 | 95, 107 | syl 14 |
. . 3
|
| 109 | 92, 101, 108 | mpjaodan 800 |
. 2
|
| 110 | elxr 9898 |
. . 3
| |
| 111 | 10, 110 | sylib 122 |
. 2
|
| 112 | 73, 91, 109, 111 | mpjao3dan 1320 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-i2m1 8030 ax-0id 8033 ax-rnegex 8034 ax-pre-ltirr 8037 ax-pre-apti 8040 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-xadd 9895 |
| This theorem is referenced by: xleadd2a 9996 xleadd1 9997 xaddge0 10000 xle2add 10001 xblss2ps 14876 xblss2 14877 |
| Copyright terms: Public domain | W3C validator |