Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xleadd1a | Unicode version |
Description: Extended real version of leadd1 8349; note that the converse implication is not true, unlike the real version (for example but ). (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xleadd1a |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplrr 531 | . . . . . . 7 | |
2 | simpr 109 | . . . . . . 7 | |
3 | simplrl 530 | . . . . . . 7 | |
4 | simpllr 529 | . . . . . . 7 | |
5 | 1, 2, 3, 4 | leadd1dd 8478 | . . . . . 6 |
6 | 1, 3 | rexaddd 9811 | . . . . . 6 |
7 | 2, 3 | rexaddd 9811 | . . . . . 6 |
8 | 5, 6, 7 | 3brtr4d 4021 | . . . . 5 |
9 | simpl1 995 | . . . . . . . . 9 | |
10 | simpl3 997 | . . . . . . . . 9 | |
11 | xaddcl 9817 | . . . . . . . . 9 | |
12 | 9, 10, 11 | syl2anc 409 | . . . . . . . 8 |
13 | 12 | ad2antrr 485 | . . . . . . 7 |
14 | pnfge 9746 | . . . . . . 7 | |
15 | 13, 14 | syl 14 | . . . . . 6 |
16 | oveq1 5860 | . . . . . . 7 | |
17 | rexr 7965 | . . . . . . . . 9 | |
18 | renemnf 7968 | . . . . . . . . 9 | |
19 | xaddpnf2 9804 | . . . . . . . . 9 | |
20 | 17, 18, 19 | syl2anc 409 | . . . . . . . 8 |
21 | 20 | ad2antrl 487 | . . . . . . 7 |
22 | 16, 21 | sylan9eqr 2225 | . . . . . 6 |
23 | 15, 22 | breqtrrd 4017 | . . . . 5 |
24 | 12 | adantr 274 | . . . . . . . 8 |
25 | 24 | xrleidd 9758 | . . . . . . 7 |
26 | simplr 525 | . . . . . . . . 9 | |
27 | simpr 109 | . . . . . . . . . 10 | |
28 | 9 | adantr 274 | . . . . . . . . . . 11 |
29 | mnfle 9749 | . . . . . . . . . . 11 | |
30 | 28, 29 | syl 14 | . . . . . . . . . 10 |
31 | 27, 30 | eqbrtrd 4011 | . . . . . . . . 9 |
32 | simpl2 996 | . . . . . . . . . . 11 | |
33 | xrletri3 9761 | . . . . . . . . . . 11 | |
34 | 9, 32, 33 | syl2anc 409 | . . . . . . . . . 10 |
35 | 34 | adantr 274 | . . . . . . . . 9 |
36 | 26, 31, 35 | mpbir2and 939 | . . . . . . . 8 |
37 | 36 | oveq1d 5868 | . . . . . . 7 |
38 | 25, 37 | breqtrd 4015 | . . . . . 6 |
39 | 38 | adantlr 474 | . . . . 5 |
40 | elxr 9733 | . . . . . . 7 | |
41 | 32, 40 | sylib 121 | . . . . . 6 |
42 | 41 | adantr 274 | . . . . 5 |
43 | 8, 23, 39, 42 | mpjao3dan 1302 | . . . 4 |
44 | 43 | anassrs 398 | . . 3 |
45 | 12 | adantr 274 | . . . . . 6 |
46 | 45 | xrleidd 9758 | . . . . 5 |
47 | simplr 525 | . . . . . . 7 | |
48 | pnfge 9746 | . . . . . . . . . 10 | |
49 | 32, 48 | syl 14 | . . . . . . . . 9 |
50 | 49 | adantr 274 | . . . . . . . 8 |
51 | simpr 109 | . . . . . . . 8 | |
52 | 50, 51 | breqtrrd 4017 | . . . . . . 7 |
53 | 34 | adantr 274 | . . . . . . 7 |
54 | 47, 52, 53 | mpbir2and 939 | . . . . . 6 |
55 | 54 | oveq1d 5868 | . . . . 5 |
56 | 46, 55 | breqtrd 4015 | . . . 4 |
57 | 56 | adantlr 474 | . . 3 |
58 | oveq1 5860 | . . . . 5 | |
59 | renepnf 7967 | . . . . . . 7 | |
60 | xaddmnf2 9806 | . . . . . . 7 | |
61 | 17, 59, 60 | syl2anc 409 | . . . . . 6 |
62 | 61 | adantl 275 | . . . . 5 |
63 | 58, 62 | sylan9eqr 2225 | . . . 4 |
64 | xaddcl 9817 | . . . . . . 7 | |
65 | 32, 10, 64 | syl2anc 409 | . . . . . 6 |
66 | 65 | ad2antrr 485 | . . . . 5 |
67 | mnfle 9749 | . . . . 5 | |
68 | 66, 67 | syl 14 | . . . 4 |
69 | 63, 68 | eqbrtrd 4011 | . . 3 |
70 | elxr 9733 | . . . . 5 | |
71 | 9, 70 | sylib 121 | . . . 4 |
72 | 71 | adantr 274 | . . 3 |
73 | 44, 57, 69, 72 | mpjao3dan 1302 | . 2 |
74 | 38 | adantlr 474 | . . 3 |
75 | 12 | ad2antrr 485 | . . . . 5 |
76 | 75, 14 | syl 14 | . . . 4 |
77 | simplr 525 | . . . . . 6 | |
78 | 77 | oveq2d 5869 | . . . . 5 |
79 | 32 | adantr 274 | . . . . . 6 |
80 | xaddpnf1 9803 | . . . . . 6 | |
81 | 79, 80 | sylan 281 | . . . . 5 |
82 | 78, 81 | eqtrd 2203 | . . . 4 |
83 | 76, 82 | breqtrrd 4017 | . . 3 |
84 | xrmnfdc 9800 | . . . . . 6 DECID | |
85 | exmiddc 831 | . . . . . 6 DECID | |
86 | 84, 85 | syl 14 | . . . . 5 |
87 | df-ne 2341 | . . . . . 6 | |
88 | 87 | orbi2i 757 | . . . . 5 |
89 | 86, 88 | sylibr 133 | . . . 4 |
90 | 79, 89 | syl 14 | . . 3 |
91 | 74, 83, 90 | mpjaodan 793 | . 2 |
92 | 56 | adantlr 474 | . . 3 |
93 | simplr 525 | . . . . . 6 | |
94 | 93 | oveq2d 5869 | . . . . 5 |
95 | 9 | adantr 274 | . . . . . 6 |
96 | xaddmnf1 9805 | . . . . . 6 | |
97 | 95, 96 | sylan 281 | . . . . 5 |
98 | 94, 97 | eqtrd 2203 | . . . 4 |
99 | 65 | ad2antrr 485 | . . . . 5 |
100 | 99, 67 | syl 14 | . . . 4 |
101 | 98, 100 | eqbrtrd 4011 | . . 3 |
102 | xrpnfdc 9799 | . . . . . 6 DECID | |
103 | exmiddc 831 | . . . . . 6 DECID | |
104 | 102, 103 | syl 14 | . . . . 5 |
105 | df-ne 2341 | . . . . . 6 | |
106 | 105 | orbi2i 757 | . . . . 5 |
107 | 104, 106 | sylibr 133 | . . . 4 |
108 | 95, 107 | syl 14 | . . 3 |
109 | 92, 101, 108 | mpjaodan 793 | . 2 |
110 | elxr 9733 | . . 3 | |
111 | 10, 110 | sylib 121 | . 2 |
112 | 73, 91, 109, 111 | mpjao3dan 1302 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 DECID wdc 829 w3o 972 w3a 973 wceq 1348 wcel 2141 wne 2340 class class class wbr 3989 (class class class)co 5853 cr 7773 caddc 7777 cpnf 7951 cmnf 7952 cxr 7953 cle 7955 cxad 9727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-i2m1 7879 ax-0id 7882 ax-rnegex 7883 ax-pre-ltirr 7886 ax-pre-apti 7889 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-xadd 9730 |
This theorem is referenced by: xleadd2a 9831 xleadd1 9832 xaddge0 9835 xle2add 9836 xblss2ps 13198 xblss2 13199 |
Copyright terms: Public domain | W3C validator |