ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xleadd1a Unicode version

Theorem xleadd1a 9497
Description: Extended real version of leadd1 8059; note that the converse implication is not true, unlike the real version (for example  0  <  1 but  ( 1 +e +oo )  <_  ( 0 +e +oo )). (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xleadd1a  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( A +e C )  <_  ( B +e C ) )

Proof of Theorem xleadd1a
StepHypRef Expression
1 simplrr 506 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  e.  RR )  ->  A  e.  RR )
2 simpr 109 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  e.  RR )  ->  B  e.  RR )
3 simplrl 505 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  e.  RR )  ->  C  e.  RR )
4 simpllr 504 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  e.  RR )  ->  A  <_  B )
51, 2, 3, 4leadd1dd 8187 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  e.  RR )  ->  ( A  +  C
)  <_  ( B  +  C ) )
61, 3rexaddd 9478 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  e.  RR )  ->  ( A +e
C )  =  ( A  +  C ) )
72, 3rexaddd 9478 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  e.  RR )  ->  ( B +e
C )  =  ( B  +  C ) )
85, 6, 73brtr4d 3905 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  e.  RR )  ->  ( A +e
C )  <_  ( B +e C ) )
9 simpl1 952 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  A  e.  RR* )
10 simpl3 954 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  C  e.  RR* )
11 xaddcl 9484 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  C  e.  RR* )  ->  ( A +e C )  e.  RR* )
129, 10, 11syl2anc 406 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( A +e C )  e.  RR* )
1312ad2antrr 475 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  = +oo )  ->  ( A +e
C )  e.  RR* )
14 pnfge 9416 . . . . . . 7  |-  ( ( A +e C )  e.  RR*  ->  ( A +e C )  <_ +oo )
1513, 14syl 14 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  = +oo )  ->  ( A +e
C )  <_ +oo )
16 oveq1 5713 . . . . . . 7  |-  ( B  = +oo  ->  ( B +e C )  =  ( +oo +e C ) )
17 rexr 7683 . . . . . . . . 9  |-  ( C  e.  RR  ->  C  e.  RR* )
18 renemnf 7686 . . . . . . . . 9  |-  ( C  e.  RR  ->  C  =/= -oo )
19 xaddpnf2 9471 . . . . . . . . 9  |-  ( ( C  e.  RR*  /\  C  =/= -oo )  ->  ( +oo +e C )  = +oo )
2017, 18, 19syl2anc 406 . . . . . . . 8  |-  ( C  e.  RR  ->  ( +oo +e C )  = +oo )
2120ad2antrl 477 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  ( C  e.  RR  /\  A  e.  RR ) )  -> 
( +oo +e C )  = +oo )
2216, 21sylan9eqr 2154 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  = +oo )  ->  ( B +e
C )  = +oo )
2315, 22breqtrrd 3901 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  = +oo )  ->  ( A +e
C )  <_  ( B +e C ) )
2412adantr 272 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  B  = -oo )  ->  ( A +e C )  e.  RR* )
2524xrleidd 9428 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  B  = -oo )  ->  ( A +e C )  <_  ( A +e C ) )
26 simplr 500 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  B  = -oo )  ->  A  <_  B )
27 simpr 109 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  B  = -oo )  ->  B  = -oo )
289adantr 272 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  B  = -oo )  ->  A  e. 
RR* )
29 mnfle 9419 . . . . . . . . . . 11  |-  ( A  e.  RR*  -> -oo  <_  A )
3028, 29syl 14 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  B  = -oo )  -> -oo  <_  A )
3127, 30eqbrtrd 3895 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  B  = -oo )  ->  B  <_  A )
32 simpl2 953 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  B  e.  RR* )
33 xrletri3 9429 . . . . . . . . . . 11  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  =  B  <->  ( A  <_  B  /\  B  <_  A ) ) )
349, 32, 33syl2anc 406 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( A  =  B  <->  ( A  <_  B  /\  B  <_  A ) ) )
3534adantr 272 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  B  = -oo )  ->  ( A  =  B  <->  ( A  <_  B  /\  B  <_  A ) ) )
3626, 31, 35mpbir2and 896 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  B  = -oo )  ->  A  =  B )
3736oveq1d 5721 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  B  = -oo )  ->  ( A +e C )  =  ( B +e C ) )
3825, 37breqtrd 3899 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  B  = -oo )  ->  ( A +e C )  <_  ( B +e C ) )
3938adantlr 464 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  ( C  e.  RR  /\  A  e.  RR ) )  /\  B  = -oo )  ->  ( A +e
C )  <_  ( B +e C ) )
40 elxr 9404 . . . . . . 7  |-  ( B  e.  RR*  <->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
4132, 40sylib 121 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
4241adantr 272 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  ( C  e.  RR  /\  A  e.  RR ) )  -> 
( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
438, 23, 39, 42mpjao3dan 1253 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  ( C  e.  RR  /\  A  e.  RR ) )  -> 
( A +e
C )  <_  ( B +e C ) )
4443anassrs 395 . . 3  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  e.  RR )  /\  A  e.  RR )  ->  ( A +e C )  <_  ( B +e C ) )
4512adantr 272 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  A  = +oo )  ->  ( A +e C )  e.  RR* )
4645xrleidd 9428 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  A  = +oo )  ->  ( A +e C )  <_  ( A +e C ) )
47 simplr 500 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  A  = +oo )  ->  A  <_  B )
48 pnfge 9416 . . . . . . . . . 10  |-  ( B  e.  RR*  ->  B  <_ +oo )
4932, 48syl 14 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  B  <_ +oo )
5049adantr 272 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  A  = +oo )  ->  B  <_ +oo )
51 simpr 109 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  A  = +oo )  ->  A  = +oo )
5250, 51breqtrrd 3901 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  A  = +oo )  ->  B  <_  A )
5334adantr 272 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  A  = +oo )  ->  ( A  =  B  <->  ( A  <_  B  /\  B  <_  A ) ) )
5447, 52, 53mpbir2and 896 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  A  = +oo )  ->  A  =  B )
5554oveq1d 5721 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  A  = +oo )  ->  ( A +e C )  =  ( B +e C ) )
5646, 55breqtrd 3899 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  A  = +oo )  ->  ( A +e C )  <_  ( B +e C ) )
5756adantlr 464 . . 3  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  e.  RR )  /\  A  = +oo )  ->  ( A +e C )  <_  ( B +e C ) )
58 oveq1 5713 . . . . 5  |-  ( A  = -oo  ->  ( A +e C )  =  ( -oo +e C ) )
59 renepnf 7685 . . . . . . 7  |-  ( C  e.  RR  ->  C  =/= +oo )
60 xaddmnf2 9473 . . . . . . 7  |-  ( ( C  e.  RR*  /\  C  =/= +oo )  ->  ( -oo +e C )  = -oo )
6117, 59, 60syl2anc 406 . . . . . 6  |-  ( C  e.  RR  ->  ( -oo +e C )  = -oo )
6261adantl 273 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  C  e.  RR )  ->  ( -oo +e C )  = -oo )
6358, 62sylan9eqr 2154 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  e.  RR )  /\  A  = -oo )  ->  ( A +e C )  = -oo )
64 xaddcl 9484 . . . . . . 7  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  ( B +e C )  e.  RR* )
6532, 10, 64syl2anc 406 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( B +e C )  e.  RR* )
6665ad2antrr 475 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  e.  RR )  /\  A  = -oo )  ->  ( B +e C )  e.  RR* )
67 mnfle 9419 . . . . 5  |-  ( ( B +e C )  e.  RR*  -> -oo 
<_  ( B +e
C ) )
6866, 67syl 14 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  e.  RR )  /\  A  = -oo )  -> -oo  <_  ( B +e C ) )
6963, 68eqbrtrd 3895 . . 3  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  e.  RR )  /\  A  = -oo )  ->  ( A +e C )  <_  ( B +e C ) )
70 elxr 9404 . . . . 5  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
719, 70sylib 121 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
7271adantr 272 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  C  e.  RR )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
7344, 57, 69, 72mpjao3dan 1253 . 2  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  C  e.  RR )  ->  ( A +e C )  <_  ( B +e C ) )
7438adantlr 464 . . 3  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = +oo )  /\  B  = -oo )  ->  ( A +e C )  <_  ( B +e C ) )
7512ad2antrr 475 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = +oo )  /\  B  =/= -oo )  ->  ( A +e C )  e.  RR* )
7675, 14syl 14 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = +oo )  /\  B  =/= -oo )  ->  ( A +e C )  <_ +oo )
77 simplr 500 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = +oo )  /\  B  =/= -oo )  ->  C  = +oo )
7877oveq2d 5722 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = +oo )  /\  B  =/= -oo )  ->  ( B +e C )  =  ( B +e +oo ) )
7932adantr 272 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  C  = +oo )  ->  B  e. 
RR* )
80 xaddpnf1 9470 . . . . . 6  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  ->  ( B +e +oo )  = +oo )
8179, 80sylan 279 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = +oo )  /\  B  =/= -oo )  ->  ( B +e +oo )  = +oo )
8278, 81eqtrd 2132 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = +oo )  /\  B  =/= -oo )  ->  ( B +e C )  = +oo )
8376, 82breqtrrd 3901 . . 3  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = +oo )  /\  B  =/= -oo )  ->  ( A +e C )  <_  ( B +e C ) )
84 xrmnfdc 9467 . . . . . 6  |-  ( B  e.  RR*  -> DECID  B  = -oo )
85 exmiddc 788 . . . . . 6  |-  (DECID  B  = -oo  ->  ( B  = -oo  \/  -.  B  = -oo ) )
8684, 85syl 14 . . . . 5  |-  ( B  e.  RR*  ->  ( B  = -oo  \/  -.  B  = -oo )
)
87 df-ne 2268 . . . . . 6  |-  ( B  =/= -oo  <->  -.  B  = -oo )
8887orbi2i 720 . . . . 5  |-  ( ( B  = -oo  \/  B  =/= -oo )  <->  ( B  = -oo  \/  -.  B  = -oo ) )
8986, 88sylibr 133 . . . 4  |-  ( B  e.  RR*  ->  ( B  = -oo  \/  B  =/= -oo ) )
9079, 89syl 14 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  C  = +oo )  ->  ( B  = -oo  \/  B  =/= -oo ) )
9174, 83, 90mpjaodan 753 . 2  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  C  = +oo )  ->  ( A +e C )  <_  ( B +e C ) )
9256adantlr 464 . . 3  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = -oo )  /\  A  = +oo )  ->  ( A +e C )  <_  ( B +e C ) )
93 simplr 500 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = -oo )  /\  A  =/= +oo )  ->  C  = -oo )
9493oveq2d 5722 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = -oo )  /\  A  =/= +oo )  ->  ( A +e C )  =  ( A +e -oo ) )
959adantr 272 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  C  = -oo )  ->  A  e. 
RR* )
96 xaddmnf1 9472 . . . . . 6  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  ( A +e -oo )  = -oo )
9795, 96sylan 279 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = -oo )  /\  A  =/= +oo )  ->  ( A +e -oo )  = -oo )
9894, 97eqtrd 2132 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = -oo )  /\  A  =/= +oo )  ->  ( A +e C )  = -oo )
9965ad2antrr 475 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = -oo )  /\  A  =/= +oo )  ->  ( B +e C )  e.  RR* )
10099, 67syl 14 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = -oo )  /\  A  =/= +oo )  -> -oo  <_  ( B +e C ) )
10198, 100eqbrtrd 3895 . . 3  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  <_  B )  /\  C  = -oo )  /\  A  =/= +oo )  ->  ( A +e C )  <_  ( B +e C ) )
102 xrpnfdc 9466 . . . . . 6  |-  ( A  e.  RR*  -> DECID  A  = +oo )
103 exmiddc 788 . . . . . 6  |-  (DECID  A  = +oo  ->  ( A  = +oo  \/  -.  A  = +oo ) )
104102, 103syl 14 . . . . 5  |-  ( A  e.  RR*  ->  ( A  = +oo  \/  -.  A  = +oo )
)
105 df-ne 2268 . . . . . 6  |-  ( A  =/= +oo  <->  -.  A  = +oo )
106105orbi2i 720 . . . . 5  |-  ( ( A  = +oo  \/  A  =/= +oo )  <->  ( A  = +oo  \/  -.  A  = +oo ) )
107104, 106sylibr 133 . . . 4  |-  ( A  e.  RR*  ->  ( A  = +oo  \/  A  =/= +oo ) )
10895, 107syl 14 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  C  = -oo )  ->  ( A  = +oo  \/  A  =/= +oo ) )
10992, 101, 108mpjaodan 753 . 2  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  <_  B
)  /\  C  = -oo )  ->  ( A +e C )  <_  ( B +e C ) )
110 elxr 9404 . . 3  |-  ( C  e.  RR*  <->  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )
11110, 110sylib 121 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )
11273, 91, 109, 111mpjao3dan 1253 1  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( A +e C )  <_  ( B +e C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 670  DECID wdc 786    \/ w3o 929    /\ w3a 930    = wceq 1299    e. wcel 1448    =/= wne 2267   class class class wbr 3875  (class class class)co 5706   RRcr 7499    + caddc 7503   +oocpnf 7669   -oocmnf 7670   RR*cxr 7671    <_ cle 7673   +ecxad 9398
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-addcom 7595  ax-addass 7597  ax-i2m1 7600  ax-0id 7603  ax-rnegex 7604  ax-pre-ltirr 7607  ax-pre-apti 7610  ax-pre-ltadd 7611
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-if 3422  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-xadd 9401
This theorem is referenced by:  xleadd2a  9498  xleadd1  9499  xaddge0  9502  xle2add  9503  xblss2ps  12332  xblss2  12333
  Copyright terms: Public domain W3C validator