![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iooneg | GIF version |
Description: Membership in a negated open real interval. (Contributed by Paul Chapman, 26-Nov-2007.) |
Ref | Expression |
---|---|
iooneg | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ (𝐴(,)𝐵) ↔ -𝐶 ∈ (-𝐵(,)-𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltneg 8421 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶 ↔ -𝐶 < -𝐴)) | |
2 | 1 | 3adant2 1016 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶 ↔ -𝐶 < -𝐴)) |
3 | ltneg 8421 | . . . . . 6 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 < 𝐵 ↔ -𝐵 < -𝐶)) | |
4 | 3 | ancoms 268 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < 𝐵 ↔ -𝐵 < -𝐶)) |
5 | 4 | 3adant1 1015 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < 𝐵 ↔ -𝐵 < -𝐶)) |
6 | 2, 5 | anbi12d 473 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐶 ∧ 𝐶 < 𝐵) ↔ (-𝐶 < -𝐴 ∧ -𝐵 < -𝐶))) |
7 | ancom 266 | . . 3 ⊢ ((-𝐶 < -𝐴 ∧ -𝐵 < -𝐶) ↔ (-𝐵 < -𝐶 ∧ -𝐶 < -𝐴)) | |
8 | 6, 7 | bitrdi 196 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐶 ∧ 𝐶 < 𝐵) ↔ (-𝐵 < -𝐶 ∧ -𝐶 < -𝐴))) |
9 | rexr 8005 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
10 | rexr 8005 | . . 3 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
11 | rexr 8005 | . . 3 ⊢ (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*) | |
12 | elioo5 9935 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | |
13 | 9, 10, 11, 12 | syl3an 1280 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
14 | renegcl 8220 | . . . 4 ⊢ (𝐵 ∈ ℝ → -𝐵 ∈ ℝ) | |
15 | renegcl 8220 | . . . 4 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
16 | renegcl 8220 | . . . 4 ⊢ (𝐶 ∈ ℝ → -𝐶 ∈ ℝ) | |
17 | rexr 8005 | . . . . 5 ⊢ (-𝐵 ∈ ℝ → -𝐵 ∈ ℝ*) | |
18 | rexr 8005 | . . . . 5 ⊢ (-𝐴 ∈ ℝ → -𝐴 ∈ ℝ*) | |
19 | rexr 8005 | . . . . 5 ⊢ (-𝐶 ∈ ℝ → -𝐶 ∈ ℝ*) | |
20 | elioo5 9935 | . . . . 5 ⊢ ((-𝐵 ∈ ℝ* ∧ -𝐴 ∈ ℝ* ∧ -𝐶 ∈ ℝ*) → (-𝐶 ∈ (-𝐵(,)-𝐴) ↔ (-𝐵 < -𝐶 ∧ -𝐶 < -𝐴))) | |
21 | 17, 18, 19, 20 | syl3an 1280 | . . . 4 ⊢ ((-𝐵 ∈ ℝ ∧ -𝐴 ∈ ℝ ∧ -𝐶 ∈ ℝ) → (-𝐶 ∈ (-𝐵(,)-𝐴) ↔ (-𝐵 < -𝐶 ∧ -𝐶 < -𝐴))) |
22 | 14, 15, 16, 21 | syl3an 1280 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (-𝐶 ∈ (-𝐵(,)-𝐴) ↔ (-𝐵 < -𝐶 ∧ -𝐶 < -𝐴))) |
23 | 22 | 3com12 1207 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (-𝐶 ∈ (-𝐵(,)-𝐴) ↔ (-𝐵 < -𝐶 ∧ -𝐶 < -𝐴))) |
24 | 8, 13, 23 | 3bitr4d 220 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ (𝐴(,)𝐵) ↔ -𝐶 ∈ (-𝐵(,)-𝐴))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 978 ∈ wcel 2148 class class class wbr 4005 (class class class)co 5877 ℝcr 7812 ℝ*cxr 7993 < clt 7994 -cneg 8131 (,)cioo 9890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-distr 7917 ax-i2m1 7918 ax-0id 7921 ax-rnegex 7922 ax-cnre 7924 ax-pre-ltadd 7929 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-sub 8132 df-neg 8133 df-ioo 9894 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |