ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iooneg GIF version

Theorem iooneg 9800
Description: Membership in a negated open real interval. (Contributed by Paul Chapman, 26-Nov-2007.)
Assertion
Ref Expression
iooneg ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ (𝐴(,)𝐵) ↔ -𝐶 ∈ (-𝐵(,)-𝐴)))

Proof of Theorem iooneg
StepHypRef Expression
1 ltneg 8247 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶 ↔ -𝐶 < -𝐴))
213adant2 1001 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶 ↔ -𝐶 < -𝐴))
3 ltneg 8247 . . . . . 6 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 < 𝐵 ↔ -𝐵 < -𝐶))
43ancoms 266 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < 𝐵 ↔ -𝐵 < -𝐶))
543adant1 1000 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < 𝐵 ↔ -𝐵 < -𝐶))
62, 5anbi12d 465 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐶𝐶 < 𝐵) ↔ (-𝐶 < -𝐴 ∧ -𝐵 < -𝐶)))
7 ancom 264 . . 3 ((-𝐶 < -𝐴 ∧ -𝐵 < -𝐶) ↔ (-𝐵 < -𝐶 ∧ -𝐶 < -𝐴))
86, 7syl6bb 195 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐶𝐶 < 𝐵) ↔ (-𝐵 < -𝐶 ∧ -𝐶 < -𝐴)))
9 rexr 7834 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
10 rexr 7834 . . 3 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
11 rexr 7834 . . 3 (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*)
12 elioo5 9745 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐴 < 𝐶𝐶 < 𝐵)))
139, 10, 11, 12syl3an 1259 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐴 < 𝐶𝐶 < 𝐵)))
14 renegcl 8046 . . . 4 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
15 renegcl 8046 . . . 4 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
16 renegcl 8046 . . . 4 (𝐶 ∈ ℝ → -𝐶 ∈ ℝ)
17 rexr 7834 . . . . 5 (-𝐵 ∈ ℝ → -𝐵 ∈ ℝ*)
18 rexr 7834 . . . . 5 (-𝐴 ∈ ℝ → -𝐴 ∈ ℝ*)
19 rexr 7834 . . . . 5 (-𝐶 ∈ ℝ → -𝐶 ∈ ℝ*)
20 elioo5 9745 . . . . 5 ((-𝐵 ∈ ℝ* ∧ -𝐴 ∈ ℝ* ∧ -𝐶 ∈ ℝ*) → (-𝐶 ∈ (-𝐵(,)-𝐴) ↔ (-𝐵 < -𝐶 ∧ -𝐶 < -𝐴)))
2117, 18, 19, 20syl3an 1259 . . . 4 ((-𝐵 ∈ ℝ ∧ -𝐴 ∈ ℝ ∧ -𝐶 ∈ ℝ) → (-𝐶 ∈ (-𝐵(,)-𝐴) ↔ (-𝐵 < -𝐶 ∧ -𝐶 < -𝐴)))
2214, 15, 16, 21syl3an 1259 . . 3 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (-𝐶 ∈ (-𝐵(,)-𝐴) ↔ (-𝐵 < -𝐶 ∧ -𝐶 < -𝐴)))
23223com12 1186 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (-𝐶 ∈ (-𝐵(,)-𝐴) ↔ (-𝐵 < -𝐶 ∧ -𝐶 < -𝐴)))
248, 13, 233bitr4d 219 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ (𝐴(,)𝐵) ↔ -𝐶 ∈ (-𝐵(,)-𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963  wcel 1481   class class class wbr 3936  (class class class)co 5781  cr 7642  *cxr 7822   < clt 7823  -cneg 7957  (,)cioo 9700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-cnex 7734  ax-resscn 7735  ax-1cn 7736  ax-1re 7737  ax-icn 7738  ax-addcl 7739  ax-addrcl 7740  ax-mulcl 7741  ax-addcom 7743  ax-addass 7745  ax-distr 7747  ax-i2m1 7748  ax-0id 7751  ax-rnegex 7752  ax-cnre 7754  ax-pre-ltadd 7759
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2913  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-br 3937  df-opab 3997  df-id 4222  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-iota 5095  df-fun 5132  df-fv 5138  df-riota 5737  df-ov 5784  df-oprab 5785  df-mpo 5786  df-pnf 7825  df-mnf 7826  df-xr 7827  df-ltxr 7828  df-sub 7958  df-neg 7959  df-ioo 9704
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator