| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltmulgt11 | GIF version | ||
| Description: Multiplication by a number greater than 1. (Contributed by NM, 24-Dec-2005.) |
| Ref | Expression |
|---|---|
| ltmulgt11 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐴) → (1 < 𝐵 ↔ 𝐴 < (𝐴 · 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8141 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 2 | ltmul2 8999 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (1 < 𝐵 ↔ (𝐴 · 1) < (𝐴 · 𝐵))) | |
| 3 | 1, 2 | mp3an1 1358 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (1 < 𝐵 ↔ (𝐴 · 1) < (𝐴 · 𝐵))) |
| 4 | 3 | 3impb 1223 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 < 𝐵 ↔ (𝐴 · 1) < (𝐴 · 𝐵))) |
| 5 | 4 | 3com12 1231 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐴) → (1 < 𝐵 ↔ (𝐴 · 1) < (𝐴 · 𝐵))) |
| 6 | ax-1rid 8102 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) | |
| 7 | 6 | 3ad2ant1 1042 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 · 1) = 𝐴) |
| 8 | 7 | breq1d 4092 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐴) → ((𝐴 · 1) < (𝐴 · 𝐵) ↔ 𝐴 < (𝐴 · 𝐵))) |
| 9 | 5, 8 | bitrd 188 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐴) → (1 < 𝐵 ↔ 𝐴 < (𝐴 · 𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 class class class wbr 4082 (class class class)co 6000 ℝcr 7994 0cc0 7995 1c1 7996 · cmul 8000 < clt 8177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-ltxr 8182 df-sub 8315 df-neg 8316 |
| This theorem is referenced by: ltmulgt12 9008 ltmulgt11d 9924 efltim 12204 nprm 12640 |
| Copyright terms: Public domain | W3C validator |