ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mhmmulg GIF version

Theorem mhmmulg 13470
Description: A homomorphism of monoids preserves group multiples. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
mhmmulg.b 𝐵 = (Base‘𝐺)
mhmmulg.s · = (.g𝐺)
mhmmulg.t × = (.g𝐻)
Assertion
Ref Expression
mhmmulg ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))

Proof of Theorem mhmmulg
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvoveq1 5966 . . . . . 6 (𝑛 = 0 → (𝐹‘(𝑛 · 𝑋)) = (𝐹‘(0 · 𝑋)))
2 oveq1 5950 . . . . . 6 (𝑛 = 0 → (𝑛 × (𝐹𝑋)) = (0 × (𝐹𝑋)))
31, 2eqeq12d 2219 . . . . 5 (𝑛 = 0 → ((𝐹‘(𝑛 · 𝑋)) = (𝑛 × (𝐹𝑋)) ↔ (𝐹‘(0 · 𝑋)) = (0 × (𝐹𝑋))))
43imbi2d 230 . . . 4 (𝑛 = 0 → (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹‘(𝑛 · 𝑋)) = (𝑛 × (𝐹𝑋))) ↔ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹‘(0 · 𝑋)) = (0 × (𝐹𝑋)))))
5 fvoveq1 5966 . . . . . 6 (𝑛 = 𝑚 → (𝐹‘(𝑛 · 𝑋)) = (𝐹‘(𝑚 · 𝑋)))
6 oveq1 5950 . . . . . 6 (𝑛 = 𝑚 → (𝑛 × (𝐹𝑋)) = (𝑚 × (𝐹𝑋)))
75, 6eqeq12d 2219 . . . . 5 (𝑛 = 𝑚 → ((𝐹‘(𝑛 · 𝑋)) = (𝑛 × (𝐹𝑋)) ↔ (𝐹‘(𝑚 · 𝑋)) = (𝑚 × (𝐹𝑋))))
87imbi2d 230 . . . 4 (𝑛 = 𝑚 → (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹‘(𝑛 · 𝑋)) = (𝑛 × (𝐹𝑋))) ↔ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹‘(𝑚 · 𝑋)) = (𝑚 × (𝐹𝑋)))))
9 fvoveq1 5966 . . . . . 6 (𝑛 = (𝑚 + 1) → (𝐹‘(𝑛 · 𝑋)) = (𝐹‘((𝑚 + 1) · 𝑋)))
10 oveq1 5950 . . . . . 6 (𝑛 = (𝑚 + 1) → (𝑛 × (𝐹𝑋)) = ((𝑚 + 1) × (𝐹𝑋)))
119, 10eqeq12d 2219 . . . . 5 (𝑛 = (𝑚 + 1) → ((𝐹‘(𝑛 · 𝑋)) = (𝑛 × (𝐹𝑋)) ↔ (𝐹‘((𝑚 + 1) · 𝑋)) = ((𝑚 + 1) × (𝐹𝑋))))
1211imbi2d 230 . . . 4 (𝑛 = (𝑚 + 1) → (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹‘(𝑛 · 𝑋)) = (𝑛 × (𝐹𝑋))) ↔ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹‘((𝑚 + 1) · 𝑋)) = ((𝑚 + 1) × (𝐹𝑋)))))
13 fvoveq1 5966 . . . . . 6 (𝑛 = 𝑁 → (𝐹‘(𝑛 · 𝑋)) = (𝐹‘(𝑁 · 𝑋)))
14 oveq1 5950 . . . . . 6 (𝑛 = 𝑁 → (𝑛 × (𝐹𝑋)) = (𝑁 × (𝐹𝑋)))
1513, 14eqeq12d 2219 . . . . 5 (𝑛 = 𝑁 → ((𝐹‘(𝑛 · 𝑋)) = (𝑛 × (𝐹𝑋)) ↔ (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋))))
1615imbi2d 230 . . . 4 (𝑛 = 𝑁 → (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹‘(𝑛 · 𝑋)) = (𝑛 × (𝐹𝑋))) ↔ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))))
17 eqid 2204 . . . . . . 7 (0g𝐺) = (0g𝐺)
18 eqid 2204 . . . . . . 7 (0g𝐻) = (0g𝐻)
1917, 18mhm0 13271 . . . . . 6 (𝐹 ∈ (𝐺 MndHom 𝐻) → (𝐹‘(0g𝐺)) = (0g𝐻))
2019adantr 276 . . . . 5 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹‘(0g𝐺)) = (0g𝐻))
21 mhmmulg.b . . . . . . . 8 𝐵 = (Base‘𝐺)
22 mhmmulg.s . . . . . . . 8 · = (.g𝐺)
2321, 17, 22mulg0 13432 . . . . . . 7 (𝑋𝐵 → (0 · 𝑋) = (0g𝐺))
2423adantl 277 . . . . . 6 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (0 · 𝑋) = (0g𝐺))
2524fveq2d 5579 . . . . 5 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹‘(0 · 𝑋)) = (𝐹‘(0g𝐺)))
26 eqid 2204 . . . . . . . 8 (Base‘𝐻) = (Base‘𝐻)
2721, 26mhmf 13268 . . . . . . 7 (𝐹 ∈ (𝐺 MndHom 𝐻) → 𝐹:𝐵⟶(Base‘𝐻))
2827ffvelcdmda 5714 . . . . . 6 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹𝑋) ∈ (Base‘𝐻))
29 mhmmulg.t . . . . . . 7 × = (.g𝐻)
3026, 18, 29mulg0 13432 . . . . . 6 ((𝐹𝑋) ∈ (Base‘𝐻) → (0 × (𝐹𝑋)) = (0g𝐻))
3128, 30syl 14 . . . . 5 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (0 × (𝐹𝑋)) = (0g𝐻))
3220, 25, 313eqtr4d 2247 . . . 4 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹‘(0 · 𝑋)) = (0 × (𝐹𝑋)))
33 oveq1 5950 . . . . . . 7 ((𝐹‘(𝑚 · 𝑋)) = (𝑚 × (𝐹𝑋)) → ((𝐹‘(𝑚 · 𝑋))(+g𝐻)(𝐹𝑋)) = ((𝑚 × (𝐹𝑋))(+g𝐻)(𝐹𝑋)))
34 mhmrcl1 13266 . . . . . . . . . . . 12 (𝐹 ∈ (𝐺 MndHom 𝐻) → 𝐺 ∈ Mnd)
3534ad2antrr 488 . . . . . . . . . . 11 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑚 ∈ ℕ0) → 𝐺 ∈ Mnd)
36 simpr 110 . . . . . . . . . . 11 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
37 simplr 528 . . . . . . . . . . 11 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑚 ∈ ℕ0) → 𝑋𝐵)
38 eqid 2204 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
3921, 22, 38mulgnn0p1 13440 . . . . . . . . . . 11 ((𝐺 ∈ Mnd ∧ 𝑚 ∈ ℕ0𝑋𝐵) → ((𝑚 + 1) · 𝑋) = ((𝑚 · 𝑋)(+g𝐺)𝑋))
4035, 36, 37, 39syl3anc 1249 . . . . . . . . . 10 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑚 ∈ ℕ0) → ((𝑚 + 1) · 𝑋) = ((𝑚 · 𝑋)(+g𝐺)𝑋))
4140fveq2d 5579 . . . . . . . . 9 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑚 ∈ ℕ0) → (𝐹‘((𝑚 + 1) · 𝑋)) = (𝐹‘((𝑚 · 𝑋)(+g𝐺)𝑋)))
42 simpll 527 . . . . . . . . . 10 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑚 ∈ ℕ0) → 𝐹 ∈ (𝐺 MndHom 𝐻))
4334ad2antrr 488 . . . . . . . . . . . 12 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑚 ∈ ℕ0) ∧ 𝑋𝐵) → 𝐺 ∈ Mnd)
44 simplr 528 . . . . . . . . . . . 12 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑚 ∈ ℕ0) ∧ 𝑋𝐵) → 𝑚 ∈ ℕ0)
45 simpr 110 . . . . . . . . . . . 12 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑚 ∈ ℕ0) ∧ 𝑋𝐵) → 𝑋𝐵)
4621, 22mulgnn0cl 13445 . . . . . . . . . . . 12 ((𝐺 ∈ Mnd ∧ 𝑚 ∈ ℕ0𝑋𝐵) → (𝑚 · 𝑋) ∈ 𝐵)
4743, 44, 45, 46syl3anc 1249 . . . . . . . . . . 11 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑚 ∈ ℕ0) ∧ 𝑋𝐵) → (𝑚 · 𝑋) ∈ 𝐵)
4847an32s 568 . . . . . . . . . 10 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑚 ∈ ℕ0) → (𝑚 · 𝑋) ∈ 𝐵)
49 eqid 2204 . . . . . . . . . . 11 (+g𝐻) = (+g𝐻)
5021, 38, 49mhmlin 13270 . . . . . . . . . 10 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ (𝑚 · 𝑋) ∈ 𝐵𝑋𝐵) → (𝐹‘((𝑚 · 𝑋)(+g𝐺)𝑋)) = ((𝐹‘(𝑚 · 𝑋))(+g𝐻)(𝐹𝑋)))
5142, 48, 37, 50syl3anc 1249 . . . . . . . . 9 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑚 ∈ ℕ0) → (𝐹‘((𝑚 · 𝑋)(+g𝐺)𝑋)) = ((𝐹‘(𝑚 · 𝑋))(+g𝐻)(𝐹𝑋)))
5241, 51eqtrd 2237 . . . . . . . 8 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑚 ∈ ℕ0) → (𝐹‘((𝑚 + 1) · 𝑋)) = ((𝐹‘(𝑚 · 𝑋))(+g𝐻)(𝐹𝑋)))
53 mhmrcl2 13267 . . . . . . . . . 10 (𝐹 ∈ (𝐺 MndHom 𝐻) → 𝐻 ∈ Mnd)
5453ad2antrr 488 . . . . . . . . 9 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑚 ∈ ℕ0) → 𝐻 ∈ Mnd)
5528adantr 276 . . . . . . . . 9 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑚 ∈ ℕ0) → (𝐹𝑋) ∈ (Base‘𝐻))
5626, 29, 49mulgnn0p1 13440 . . . . . . . . 9 ((𝐻 ∈ Mnd ∧ 𝑚 ∈ ℕ0 ∧ (𝐹𝑋) ∈ (Base‘𝐻)) → ((𝑚 + 1) × (𝐹𝑋)) = ((𝑚 × (𝐹𝑋))(+g𝐻)(𝐹𝑋)))
5754, 36, 55, 56syl3anc 1249 . . . . . . . 8 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑚 ∈ ℕ0) → ((𝑚 + 1) × (𝐹𝑋)) = ((𝑚 × (𝐹𝑋))(+g𝐻)(𝐹𝑋)))
5852, 57eqeq12d 2219 . . . . . . 7 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑚 ∈ ℕ0) → ((𝐹‘((𝑚 + 1) · 𝑋)) = ((𝑚 + 1) × (𝐹𝑋)) ↔ ((𝐹‘(𝑚 · 𝑋))(+g𝐻)(𝐹𝑋)) = ((𝑚 × (𝐹𝑋))(+g𝐻)(𝐹𝑋))))
5933, 58imbitrrid 156 . . . . . 6 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑚 ∈ ℕ0) → ((𝐹‘(𝑚 · 𝑋)) = (𝑚 × (𝐹𝑋)) → (𝐹‘((𝑚 + 1) · 𝑋)) = ((𝑚 + 1) × (𝐹𝑋))))
6059expcom 116 . . . . 5 (𝑚 ∈ ℕ0 → ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → ((𝐹‘(𝑚 · 𝑋)) = (𝑚 × (𝐹𝑋)) → (𝐹‘((𝑚 + 1) · 𝑋)) = ((𝑚 + 1) × (𝐹𝑋)))))
6160a2d 26 . . . 4 (𝑚 ∈ ℕ0 → (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹‘(𝑚 · 𝑋)) = (𝑚 × (𝐹𝑋))) → ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹‘((𝑚 + 1) · 𝑋)) = ((𝑚 + 1) × (𝐹𝑋)))))
624, 8, 12, 16, 32, 61nn0ind 9486 . . 3 (𝑁 ∈ ℕ0 → ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋))))
63623impib 1203 . 2 ((𝑁 ∈ ℕ0𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))
64633com12 1209 1 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1372  wcel 2175  cfv 5270  (class class class)co 5943  0cc0 7924  1c1 7925   + caddc 7927  0cn0 9294  Basecbs 12803  +gcplusg 12880  0gc0g 13059  Mndcmnd 13219   MndHom cmhm 13260  .gcmg 13426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-frec 6476  df-map 6736  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-inn 9036  df-2 9094  df-n0 9295  df-z 9372  df-uz 9648  df-seqfrec 10591  df-ndx 12806  df-slot 12807  df-base 12809  df-plusg 12893  df-0g 13061  df-mgm 13159  df-sgrp 13205  df-mnd 13220  df-mhm 13262  df-minusg 13307  df-mulg 13427
This theorem is referenced by:  ghmmulg  13563  lgseisenlem4  15521
  Copyright terms: Public domain W3C validator