ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltaddsub2 GIF version

Theorem ltaddsub2 8456
Description: 'Less than' relationship between addition and subtraction. (Contributed by NM, 17-Nov-2004.)
Assertion
Ref Expression
ltaddsub2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) < 𝐶𝐵 < (𝐶𝐴)))

Proof of Theorem ltaddsub2
StepHypRef Expression
1 recn 8005 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 recn 8005 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
3 addcom 8156 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
41, 2, 3syl2an 289 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
543adant3 1019 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
65breq1d 4039 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) < 𝐶 ↔ (𝐵 + 𝐴) < 𝐶))
7 ltaddsub 8455 . . 3 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐵 + 𝐴) < 𝐶𝐵 < (𝐶𝐴)))
873com12 1209 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐵 + 𝐴) < 𝐶𝐵 < (𝐶𝐴)))
96, 8bitrd 188 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) < 𝐶𝐵 < (𝐶𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 980   = wceq 1364  wcel 2164   class class class wbr 4029  (class class class)co 5918  cc 7870  cr 7871   + caddc 7875   < clt 8054  cmin 8190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-sub 8192  df-neg 8193
This theorem is referenced by:  ltsub13  8462  ltaddsub2d  8565  addltmul  9219  absdiflt  11236
  Copyright terms: Public domain W3C validator