ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addsub GIF version

Theorem addsub 8353
Description: Law for addition and subtraction. (Contributed by NM, 19-Aug-2001.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
addsub ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐶) = ((𝐴𝐶) + 𝐵))

Proof of Theorem addsub
StepHypRef Expression
1 addcom 8279 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
21oveq1d 6015 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐶) = ((𝐵 + 𝐴) − 𝐶))
323adant3 1041 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐶) = ((𝐵 + 𝐴) − 𝐶))
4 addsubass 8352 . . 3 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵 + 𝐴) − 𝐶) = (𝐵 + (𝐴𝐶)))
543com12 1231 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵 + 𝐴) − 𝐶) = (𝐵 + (𝐴𝐶)))
6 subcl 8341 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐶) ∈ ℂ)
7 addcom 8279 . . . . 5 ((𝐵 ∈ ℂ ∧ (𝐴𝐶) ∈ ℂ) → (𝐵 + (𝐴𝐶)) = ((𝐴𝐶) + 𝐵))
86, 7sylan2 286 . . . 4 ((𝐵 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ)) → (𝐵 + (𝐴𝐶)) = ((𝐴𝐶) + 𝐵))
983impb 1223 . . 3 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 + (𝐴𝐶)) = ((𝐴𝐶) + 𝐵))
1093com12 1231 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 + (𝐴𝐶)) = ((𝐴𝐶) + 𝐵))
113, 5, 103eqtrd 2266 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐶) = ((𝐴𝐶) + 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  (class class class)co 6000  cc 7993   + caddc 7998  cmin 8313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-setind 4628  ax-resscn 8087  ax-1cn 8088  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-sub 8315
This theorem is referenced by:  subadd23  8354  2addsub  8356  nnpcan  8365  subsub  8372  npncan3  8380  addsub4  8385  addsubi  8434  addsubd  8474  muleqadd  8811  nnaddm1cl  9504  expubnd  10813  omeo  12404
  Copyright terms: Public domain W3C validator