ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  leadd1 GIF version

Theorem leadd1 8216
Description: Addition to both sides of 'less than or equal to'. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 18-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
leadd1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴𝐵 ↔ (𝐴 + 𝐶) ≤ (𝐵 + 𝐶)))

Proof of Theorem leadd1
StepHypRef Expression
1 ltadd1 8215 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐴 ↔ (𝐵 + 𝐶) < (𝐴 + 𝐶)))
213com12 1186 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐴 ↔ (𝐵 + 𝐶) < (𝐴 + 𝐶)))
32notbid 657 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (¬ 𝐵 < 𝐴 ↔ ¬ (𝐵 + 𝐶) < (𝐴 + 𝐶)))
4 simp1 982 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ)
5 simp2 983 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ)
64, 5lenltd 7904 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
7 simp3 984 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ)
84, 7readdcld 7819 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐶) ∈ ℝ)
95, 7readdcld 7819 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐶) ∈ ℝ)
108, 9lenltd 7904 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐶) ≤ (𝐵 + 𝐶) ↔ ¬ (𝐵 + 𝐶) < (𝐴 + 𝐶)))
113, 6, 103bitr4d 219 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴𝐵 ↔ (𝐴 + 𝐶) ≤ (𝐵 + 𝐶)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104  w3a 963  wcel 1481   class class class wbr 3937  (class class class)co 5782  cr 7643   + caddc 7647   < clt 7824  cle 7825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-i2m1 7749  ax-0id 7752  ax-rnegex 7753  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-xp 4553  df-cnv 4555  df-iota 5096  df-fv 5139  df-ov 5785  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830
This theorem is referenced by:  leadd2  8217  lesubadd  8220  leaddsub  8224  le2add  8230  leadd1i  8289  leadd1d  8325  zleltp1  9133  eluzp1p1  9375  eluzaddi  9376  icoshft  9803  iccshftr  9807  fzen  9854  fzaddel  9870  fznatpl1  9887  fldiv4p1lem1div2  10109  faclbnd6  10522
  Copyright terms: Public domain W3C validator