ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divdirap GIF version

Theorem divdirap 8218
Description: Distribution of division over addition. (Contributed by Jim Kingdon, 25-Feb-2020.)
Assertion
Ref Expression
divdirap ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 + 𝐵) / 𝐶) = ((𝐴 / 𝐶) + (𝐵 / 𝐶)))

Proof of Theorem divdirap
StepHypRef Expression
1 simp1 944 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → 𝐴 ∈ ℂ)
2 simp2 945 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → 𝐵 ∈ ℂ)
3 recclap 8200 . . . 4 ((𝐶 ∈ ℂ ∧ 𝐶 # 0) → (1 / 𝐶) ∈ ℂ)
433ad2ant3 967 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (1 / 𝐶) ∈ ℂ)
51, 2, 4adddird 7567 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 + 𝐵) · (1 / 𝐶)) = ((𝐴 · (1 / 𝐶)) + (𝐵 · (1 / 𝐶))))
61, 2addcld 7561 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐴 + 𝐵) ∈ ℂ)
7 simp3l 972 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → 𝐶 ∈ ℂ)
8 simp3r 973 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → 𝐶 # 0)
9 divrecap 8209 . . 3 (((𝐴 + 𝐵) ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 # 0) → ((𝐴 + 𝐵) / 𝐶) = ((𝐴 + 𝐵) · (1 / 𝐶)))
106, 7, 8, 9syl3anc 1175 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 + 𝐵) / 𝐶) = ((𝐴 + 𝐵) · (1 / 𝐶)))
11 divrecap 8209 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 # 0) → (𝐴 / 𝐶) = (𝐴 · (1 / 𝐶)))
121, 7, 8, 11syl3anc 1175 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐴 / 𝐶) = (𝐴 · (1 / 𝐶)))
13 divrecap 8209 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 # 0) → (𝐵 / 𝐶) = (𝐵 · (1 / 𝐶)))
142, 7, 8, 13syl3anc 1175 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐵 / 𝐶) = (𝐵 · (1 / 𝐶)))
1512, 14oveq12d 5684 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 𝐶) + (𝐵 / 𝐶)) = ((𝐴 · (1 / 𝐶)) + (𝐵 · (1 / 𝐶))))
165, 10, 153eqtr4d 2131 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 + 𝐵) / 𝐶) = ((𝐴 / 𝐶) + (𝐵 / 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 925   = wceq 1290  wcel 1439   class class class wbr 3851  (class class class)co 5666  cc 7402  0cc0 7404  1c1 7405   + caddc 7407   · cmul 7409   # cap 8112   / cdiv 8193
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-cnex 7490  ax-resscn 7491  ax-1cn 7492  ax-1re 7493  ax-icn 7494  ax-addcl 7495  ax-addrcl 7496  ax-mulcl 7497  ax-mulrcl 7498  ax-addcom 7499  ax-mulcom 7500  ax-addass 7501  ax-mulass 7502  ax-distr 7503  ax-i2m1 7504  ax-0lt1 7505  ax-1rid 7506  ax-0id 7507  ax-rnegex 7508  ax-precex 7509  ax-cnre 7510  ax-pre-ltirr 7511  ax-pre-ltwlin 7512  ax-pre-lttrn 7513  ax-pre-apti 7514  ax-pre-ltadd 7515  ax-pre-mulgt0 7516  ax-pre-mulext 7517
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rmo 2368  df-rab 2369  df-v 2622  df-sbc 2842  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-opab 3906  df-id 4129  df-po 4132  df-iso 4133  df-xp 4457  df-rel 4458  df-cnv 4459  df-co 4460  df-dm 4461  df-iota 4993  df-fun 5030  df-fv 5036  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-pnf 7578  df-mnf 7579  df-xr 7580  df-ltxr 7581  df-le 7582  df-sub 7709  df-neg 7710  df-reap 8106  df-ap 8113  df-div 8194
This theorem is referenced by:  muldivdirap  8228  divsubdirap  8229  divadddivap  8248  divdirapzi  8285  divdirapi  8290  divdirapd  8350  2halves  8699  halfaddsub  8704  zdivadd  8889  nneoor  8902  2tnp1ge0ge0  9762  flqdiv  9782  crim  10346  efival  11077  divgcdcoprm0  11415
  Copyright terms: Public domain W3C validator